Two-dimensional nonlinear map characterized by tunable Levy flights


Autoria(s): Mendez-Bermudez, J. A.; Oliveira, Juliano A. de; Leonel, Edson D.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

03/11/2015

03/11/2015

27/10/2014

Resumo

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Processo FAPESP: 2013/14655-9

Processo FAPESP: 2014/18672-8

Processo FAPESP: 2012/23688-5

After recognizing that point particles moving inside the extended version of the rippled billiard perform Levy flights characterized by a Levy-type distribution P(l) similar to l(-(1+alpha)) with alpha = 1, we derive a generalized two-dimensional nonlinear map M alpha able to produce Levy flights described by P(l) with 0 < alpha < 2. Due to this property, we call M alpha the Levy map. Then, by applying Chirikov&apos;s overlapping resonance criteria, we are able to identify the onset of global chaos as a function of the parameters of the map. With this, we state the conditions under which the Levy map could be used as a Levy pseudorandom number generator and furthermore confirm its applicability by computing scattering properties of disordered wires.

Formato

5

Identificador

http://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.042138

Physical Review E. College Pk: Amer Physical Soc, v. 90, n. 4, 5 p., 2014.

1539-3755

http://hdl.handle.net/11449/130057

http://dx.doi.org/10.1103/PhysRevE.90.042138

WOS:000349304600001

Idioma(s)

eng

Publicador

Amer Physical Soc

Relação

Physical Review E

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article