Normal Forms for Polynomial Differential Systems in R-3 Having an Invariant Quadric and a Darboux Invariant


Autoria(s): Llibre, Jaume; Messias, Marcelo; Reinol, Alisson de Carvalho
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

21/10/2015

21/10/2015

01/01/2015

Resumo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Processo FAPESP: 12/18413-7

Processo FAPESP: 2013/01743-7

We give the normal forms of all polynomial differential systems in R-3 which have a nondegenerate or degenerate quadric as an invariant algebraic surface. We also characterize among these systems those which have a Darboux invariant constructed uniquely using the invariant quadric, giving explicitly their expressions. As an example, we apply the obtained results in the determination of the Darboux invariants for the Chen system with an invariant quadric.

Formato

16

Identificador

http://www.worldscientific.com/doi/abs/10.1142/S0218127415500157

International Journal Of Bifurcation And Chaos, v. 25, n. 1, p. 16, 2015.

0218-1274

http://hdl.handle.net/11449/129339

http://dx.doi.org/10.1142/S0218127415500157

WOS:000349227400017

Idioma(s)

eng

Publicador

World Scientific Publ Co Pte Ltd

Relação

International Journal Of Bifurcation And Chaos

Direitos

closedAccess

Palavras-Chave #Polynomial differential systems #invariant quadric #Darboux integrability #Darboux invariant
Tipo

info:eu-repo/semantics/article