Normal Forms for Polynomial Differential Systems in R-3 Having an Invariant Quadric and a Darboux Invariant
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
21/10/2015
21/10/2015
01/01/2015
|
Resumo |
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Processo FAPESP: 12/18413-7 Processo FAPESP: 2013/01743-7 We give the normal forms of all polynomial differential systems in R-3 which have a nondegenerate or degenerate quadric as an invariant algebraic surface. We also characterize among these systems those which have a Darboux invariant constructed uniquely using the invariant quadric, giving explicitly their expressions. As an example, we apply the obtained results in the determination of the Darboux invariants for the Chen system with an invariant quadric. |
Formato |
16 |
Identificador |
http://www.worldscientific.com/doi/abs/10.1142/S0218127415500157 International Journal Of Bifurcation And Chaos, v. 25, n. 1, p. 16, 2015. 0218-1274 http://hdl.handle.net/11449/129339 http://dx.doi.org/10.1142/S0218127415500157 WOS:000349227400017 |
Idioma(s) |
eng |
Publicador |
World Scientific Publ Co Pte Ltd |
Relação |
International Journal Of Bifurcation And Chaos |
Direitos |
closedAccess |
Palavras-Chave | #Polynomial differential systems #invariant quadric #Darboux integrability #Darboux invariant |
Tipo |
info:eu-repo/semantics/article |