On the injectivity of C1 maps of the real plane
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
27/05/2014
27/05/2014
01/12/2002
|
Resumo |
Let X : ℝ2 → ℝ2 be a C1 map. Denote by Spec(X) the set of (complex) eigenvalues of DXp when p varies in ℝ2. If there exists ε > 0 such that Spec(X) ∩ (-ε, ε) = ∅, then X is injective. Some applications of this result to the real Keller Jacobian conjecture are discussed. |
Formato |
1187-1201 |
Identificador |
http://cms.math.ca/10.4153/CJM-2002-045-0 Canadian Journal of Mathematics, v. 54, n. 6, p. 1187-1201, 2002. 0008-414X http://hdl.handle.net/11449/67026 WOS:000179787500004 2-s2.0-0036972513 |
Idioma(s) |
eng |
Relação |
Canadian Journal of Mathematics |
Direitos |
openAccess |
Tipo |
info:eu-repo/semantics/article |