Multiplicity of Boardman strata and deformations of map germs


Autoria(s): Nuño Ballesteros, J. J.; Saia, M. J.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/05/2014

27/05/2014

01/12/1998

Resumo

We define algebraically for each map germ f: Kn, 0→ Kp, 0 and for each Boardman symbol i = (il, . . ., ik) a number ci(f) which is script A sign-invariant. If f is finitely determined, this number is the generalization of the Milnor number of f when p = 1, the number of cusps of f when n = p = 2, or the number of cross caps when n = 2, p = 3. We study some properties of this number and prove that, in some particular cases, this number can be interpreted geometrically as the number of Σi points that appear in a generic deformation of f. In the last part, we compute this number in the case that the map germ is a projection and give some applications to catastrophe map germs.

Formato

21-32

Identificador

http://dx.doi.org/10.1017/S0017089500032328

Glasgow Mathematical Journal, v. 40, n. 1, p. 21-32, 1998.

0017-0895

http://hdl.handle.net/11449/65573

10.1017/S0017089500032328

WOS:000072838400002

2-s2.0-23544458047

2-s2.0-23544458047.pdf

Idioma(s)

eng

Relação

Glasgow Mathematical Journal

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article