Multiplicity of Boardman strata and deformations of map germs
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
27/05/2014
27/05/2014
01/12/1998
|
Resumo |
We define algebraically for each map germ f: Kn, 0→ Kp, 0 and for each Boardman symbol i = (il, . . ., ik) a number ci(f) which is script A sign-invariant. If f is finitely determined, this number is the generalization of the Milnor number of f when p = 1, the number of cusps of f when n = p = 2, or the number of cross caps when n = 2, p = 3. We study some properties of this number and prove that, in some particular cases, this number can be interpreted geometrically as the number of Σi points that appear in a generic deformation of f. In the last part, we compute this number in the case that the map germ is a projection and give some applications to catastrophe map germs. |
Formato |
21-32 |
Identificador |
http://dx.doi.org/10.1017/S0017089500032328 Glasgow Mathematical Journal, v. 40, n. 1, p. 21-32, 1998. 0017-0895 http://hdl.handle.net/11449/65573 10.1017/S0017089500032328 WOS:000072838400002 2-s2.0-23544458047 2-s2.0-23544458047.pdf |
Idioma(s) |
eng |
Relação |
Glasgow Mathematical Journal |
Direitos |
closedAccess |
Tipo |
info:eu-repo/semantics/article |