On the denominator values and barycentric weights of rational interpolants


Autoria(s): Polezzi, M.; Ranga, A. Sri
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

15/03/2007

Resumo

We improve upon the method of Zhu and Zhu [A method for directly finding the denominator values of rational interpolants, J. Comput. Appl. Math. 148 (2002) 341-348] for finding the denominator values of rational interpolants, reducing considerably the number of arithmetical operations required for their computation. In a second stage, we determine the points (if existent) which can be discarded from the rational interpolation problem. Furthermore, when the interpolant has a linear denominator, we obtain a formula for the barycentric weights which is simpler than the one found by Berrut and Mittelmann [Matrices for the direct determination of the barycentric weights of rational interpolation, J. Comput. Appl. Math. 78 (1997) 355-370]. Subsequently, we give a necessary and sufficient condition for the rational interpolant to have a pole. (c) 2006 Elsevier B.V. All rights reserved.

Formato

576-590

Identificador

http://dx.doi.org/10.1016/j.cam.2006.01.013

Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 200, n. 2, p. 576-590, 2007.

0377-0427

http://hdl.handle.net/11449/35282

10.1016/j.cam.2006.01.013

WOS:000244279500010

WOS000244279500010.pdf

Idioma(s)

eng

Publicador

Elsevier B.V.

Relação

Journal of Computational and Applied Mathematics

Direitos

openAccess

Palavras-Chave #interpolation #rational interpolants #denominator values #barycentric weights
Tipo

info:eu-repo/semantics/article