On the denominator values and barycentric weights of rational interpolants
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
15/03/2007
|
Resumo |
We improve upon the method of Zhu and Zhu [A method for directly finding the denominator values of rational interpolants, J. Comput. Appl. Math. 148 (2002) 341-348] for finding the denominator values of rational interpolants, reducing considerably the number of arithmetical operations required for their computation. In a second stage, we determine the points (if existent) which can be discarded from the rational interpolation problem. Furthermore, when the interpolant has a linear denominator, we obtain a formula for the barycentric weights which is simpler than the one found by Berrut and Mittelmann [Matrices for the direct determination of the barycentric weights of rational interpolation, J. Comput. Appl. Math. 78 (1997) 355-370]. Subsequently, we give a necessary and sufficient condition for the rational interpolant to have a pole. (c) 2006 Elsevier B.V. All rights reserved. |
Formato |
576-590 |
Identificador |
http://dx.doi.org/10.1016/j.cam.2006.01.013 Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 200, n. 2, p. 576-590, 2007. 0377-0427 http://hdl.handle.net/11449/35282 10.1016/j.cam.2006.01.013 WOS:000244279500010 WOS000244279500010.pdf |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Journal of Computational and Applied Mathematics |
Direitos |
openAccess |
Palavras-Chave | #interpolation #rational interpolants #denominator values #barycentric weights |
Tipo |
info:eu-repo/semantics/article |