Semilinear parabolic problems in thin domains with a highly oscillatory boundary


Autoria(s): Arrieta, Jose M.; Carvalho, Alexandre N.; Pereira, Marcone C.; Silva, Ricardo P.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

30/09/2013

20/05/2014

30/09/2013

20/05/2014

01/10/2011

Resumo

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Processo FAPESP: 08/53094-4

Processo FAPESP: 10/18790-0

In this paper, we study the behavior of the solutions of nonlinear parabolic problems posed in a domain that degenerates into a line segment (thin domain) which has an oscillating boundary. We combine methods from linear homogenization theory for reticulated structures and from the theory on nonlinear dynamics of dissipative systems to obtain the limit problem for the elliptic and parabolic problems and analyze the convergence properties of the solutions and attractors of the evolutionary equations. (C) 2011 Elsevier Ltd. All rights reserved.

Formato

5111-5132

Identificador

http://dx.doi.org/10.1016/j.na.2011.05.006

Nonlinear Analysis-theory Methods & Applications. Oxford: Pergamon-Elsevier B.V. Ltd, v. 74, n. 15, p. 5111-5132, 2011.

0362-546X

http://hdl.handle.net/11449/25134

10.1016/j.na.2011.05.006

WOS:000291471000020

Idioma(s)

eng

Publicador

Pergamon-Elsevier B.V. Ltd

Relação

Nonlinear Analysis-theory Methods & Applications

Direitos

closedAccess

Palavras-Chave #Thin domains #Dissipative parabolic equations #Global attractors #Upper semicontinuity #Lower semicontinuity #Homogenization
Tipo

info:eu-repo/semantics/article