Semilinear parabolic problems in thin domains with a highly oscillatory boundary
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
30/09/2013
20/05/2014
30/09/2013
20/05/2014
01/10/2011
|
Resumo |
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Processo FAPESP: 08/53094-4 Processo FAPESP: 10/18790-0 In this paper, we study the behavior of the solutions of nonlinear parabolic problems posed in a domain that degenerates into a line segment (thin domain) which has an oscillating boundary. We combine methods from linear homogenization theory for reticulated structures and from the theory on nonlinear dynamics of dissipative systems to obtain the limit problem for the elliptic and parabolic problems and analyze the convergence properties of the solutions and attractors of the evolutionary equations. (C) 2011 Elsevier Ltd. All rights reserved. |
Formato |
5111-5132 |
Identificador |
http://dx.doi.org/10.1016/j.na.2011.05.006 Nonlinear Analysis-theory Methods & Applications. Oxford: Pergamon-Elsevier B.V. Ltd, v. 74, n. 15, p. 5111-5132, 2011. 0362-546X http://hdl.handle.net/11449/25134 10.1016/j.na.2011.05.006 WOS:000291471000020 |
Idioma(s) |
eng |
Publicador |
Pergamon-Elsevier B.V. Ltd |
Relação |
Nonlinear Analysis-theory Methods & Applications |
Direitos |
closedAccess |
Palavras-Chave | #Thin domains #Dissipative parabolic equations #Global attractors #Upper semicontinuity #Lower semicontinuity #Homogenization |
Tipo |
info:eu-repo/semantics/article |