Free actions of abelian p-groups on the n-torus


Autoria(s): Goncalves, D.; Vieira, João Peres
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

26/02/2014

20/05/2014

26/02/2014

20/05/2014

01/01/2005

Resumo

In this work we make some contributions to the theory of actions of abelian p-groups on the n-Torus T-n. Set congruent to Z(pk1)(h1) x Z(pk2)(h2) x...x Z(pkr)(hr), r >= 1, k(1) >= k(2) >=...>= k(r) >= 1, p prime. Suppose that the group H acts freely on T-n and the induced representation on pi(1)(T-n) congruent to Z(n) is faithful and has first Betti number b. We show that the numbers n, p, b, k(i) and h(i) (i = 1,..,r) satisfy some relation. In particular, when H congruent to Z(p)(h), the minimum value of n is phi(p) + b when b >= 1. Also when H congruent to Z(pk1) x Z(p) the minimum value of n is phi(p(k1)) + p - 1 + b for b >= 1. Here phi denotes the Euler function.

Formato

87-101

Identificador

http://math.uh.edu/~hjm/Vol31-1.html

Houston Journal of Mathematics. Houston: Univ Houston, v. 31, n. 1, p. 87-101, 2005.

0362-1588

http://hdl.handle.net/11449/25110

WOS:000227036800007

Idioma(s)

eng

Publicador

Univ Houston

Relação

Houston Journal of Mathematics

Direitos

closedAccess

Palavras-Chave #free actions #integral representation #Bieberbach groups #p-groups
Tipo

info:eu-repo/semantics/article