Free actions of abelian p-groups on the n-torus
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
26/02/2014
20/05/2014
26/02/2014
20/05/2014
01/01/2005
|
Resumo |
In this work we make some contributions to the theory of actions of abelian p-groups on the n-Torus T-n. Set congruent to Z(pk1)(h1) x Z(pk2)(h2) x...x Z(pkr)(hr), r >= 1, k(1) >= k(2) >=...>= k(r) >= 1, p prime. Suppose that the group H acts freely on T-n and the induced representation on pi(1)(T-n) congruent to Z(n) is faithful and has first Betti number b. We show that the numbers n, p, b, k(i) and h(i) (i = 1,..,r) satisfy some relation. In particular, when H congruent to Z(p)(h), the minimum value of n is phi(p) + b when b >= 1. Also when H congruent to Z(pk1) x Z(p) the minimum value of n is phi(p(k1)) + p - 1 + b for b >= 1. Here phi denotes the Euler function. |
Formato |
87-101 |
Identificador |
http://math.uh.edu/~hjm/Vol31-1.html Houston Journal of Mathematics. Houston: Univ Houston, v. 31, n. 1, p. 87-101, 2005. 0362-1588 http://hdl.handle.net/11449/25110 WOS:000227036800007 |
Idioma(s) |
eng |
Publicador |
Univ Houston |
Relação |
Houston Journal of Mathematics |
Direitos |
closedAccess |
Palavras-Chave | #free actions #integral representation #Bieberbach groups #p-groups |
Tipo |
info:eu-repo/semantics/article |