Hardware implementation of an analog neural nonderivative optimizer


Autoria(s): Cardim, Rodrigo; Teixeira, Marcelo C. M.; Assuncao, Edvaldo; Oki, Nobuo; de Carvalho, Aparecido A.; Covacic, Marcio R.; King, I; Wang, J.; Chan, L.; Wang, D. L.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/01/2006

Resumo

Analog neural systems that can automatically find the minimum value of the outputs of unknown analog systems, described by convex functions, are studied. When information about derivative or gradient are not used, these systems are called analog nonderivative optimizers. An electronic circuit for the analog neural nonderivative optimizer proposed by Teixeira and Zak, and its simulation with software PSPICE, is presented. With the simulation results and hardware implementation of the system, the validity of the proposed optimizer can be verified. These results are original, from the best of the authors knowledge.

Formato

1131-1140

Identificador

http://dx.doi.org/10.1007/11893295_125

Neural Information Processing, Pt 3, Proceedings. Berlin: Springer-verlag Berlin, v. 4234, p. 1131-1140, 2006.

0302-9743

http://hdl.handle.net/11449/9668

10.1007/11893295_125

WOS:000241759000125

Idioma(s)

eng

Publicador

Springer

Relação

Neural Information Processing, Pt 3, Proceedings

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article