Using neural networks for estimation of aquifer dynamical behavior


Autoria(s): da Silva, I. N.; Saggioro, N. J.; Cagnon, J. A.; Amari, S. I.; Giles, C. L.; Gori, M.; Piuri, V
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/01/2000

Resumo

The systems of water distribution from groundwater wells can be monitored using the changes observed on its dynamical behavior. In this paper, artificial neural networks are used to estimate the depth of the dynamical water level of groundwater wells in relation to water flow, operation time and rest time. Simulation results are presented to demonstrate the validity of the proposed approach. These results have shown that artificial neural networks can be effectively used for the identification and estimation of parameters related to systems of water distribution.

Formato

203-207

Identificador

http://dx.doi.org/10.1109/IJCNN.2000.859397

Ijcnn 2000: Proceedings of the IEEE-inns-enns International Joint Conference on Neural Networks, Vol Vi. Los Alamitos: IEEE Computer Soc, p. 203-207, 2000.

1098-7576

http://hdl.handle.net/11449/8893

10.1109/IJCNN.2000.859397

WOS:000089240600034

Idioma(s)

eng

Publicador

Institute of Electrical and Electronics Engineers (IEEE), Computer Soc

Relação

Ijcnn 2000: Proceedings of the IEEE-inns-enns International Joint Conference on Neural Networks, Vol Vi

Direitos

closedAccess

Tipo

info:eu-repo/semantics/conferencePaper