A base dinâmica na existência de autovalores duplos no modelo de Timoshenko para uma viga uniforme livre-livre
Contribuinte(s) |
Ruiz Claeyssen, Julio Cesar |
---|---|
Data(s) |
06/06/2007
2005
|
Resumo |
Considerando uma viga uniforme do tipo Timoshenko com condições de contorno livre-livre, Geist e McLaughlin em [8]apresentam uma condição necessária e suficiente que garante a existência de freqüências naturais duplas. Esta condição foi obtida usando a formulação espectral, método clássico encontrado na literatura, para as equações de quarta ordem desacopladas do modelo de Timoshenko. O método clássico requer a obtenção de um vetor constante com oito componentes para que a solução deste modelo seja conhecida. Segundo Claeyssen [2], [3], [4], [5], [6], a solução do modelo de Timoshenko pode ser obtida usando a base dinâmica gerada por uma resposta impulso-matricial fundamental. Este método permite encontrar a solução do modelo de Timoshenko usando as equações de segunda ordem acopladas. Além disso, para que a solução seja conhecida é necessário obter um vetor constante com quatro componentes. O objetivo deste trabalho é estudar a condição necessária e suficiente que garante a existência de freqüências naturais duplas, apresentada por Geist e McLaughlin, para uma viga uniforme do tipo timoshenko com condições de contorno livre-livre e verificar se é possível obter esta mesma condição quando é utilizada a base dinâmica para obter a solução deste modelo. |
Formato |
application/pdf |
Identificador |
http://hdl.handle.net/10183/6160 000481705 |
Idioma(s) |
por |
Direitos |
Open Access |
Palavras-Chave | #Modelo de Timoshenko #Autovalores : Estimacao de autovalores |
Tipo |
Dissertação |