A base dinâmica na existência de autovalores duplos no modelo de Timoshenko para uma viga uniforme livre-livre


Autoria(s): Bihuna, Eliane
Contribuinte(s)

Ruiz Claeyssen, Julio Cesar

Data(s)

06/06/2007

2005

Resumo

Considerando uma viga uniforme do tipo Timoshenko com condições de contorno livre-livre, Geist e McLaughlin em [8]apresentam uma condição necessária e suficiente que garante a existência de freqüências naturais duplas. Esta condição foi obtida usando a formulação espectral, método clássico encontrado na literatura, para as equações de quarta ordem desacopladas do modelo de Timoshenko. O método clássico requer a obtenção de um vetor constante com oito componentes para que a solução deste modelo seja conhecida. Segundo Claeyssen [2], [3], [4], [5], [6], a solução do modelo de Timoshenko pode ser obtida usando a base dinâmica gerada por uma resposta impulso-matricial fundamental. Este método permite encontrar a solução do modelo de Timoshenko usando as equações de segunda ordem acopladas. Além disso, para que a solução seja conhecida é necessário obter um vetor constante com quatro componentes. O objetivo deste trabalho é estudar a condição necessária e suficiente que garante a existência de freqüências naturais duplas, apresentada por Geist e McLaughlin, para uma viga uniforme do tipo timoshenko com condições de contorno livre-livre e verificar se é possível obter esta mesma condição quando é utilizada a base dinâmica para obter a solução deste modelo.

Formato

application/pdf

Identificador

http://hdl.handle.net/10183/6160

000481705

Idioma(s)

por

Direitos

Open Access

Palavras-Chave #Modelo de Timoshenko #Autovalores : Estimacao de autovalores
Tipo

Dissertação