Minimização de funções de custos descontínuas


Autoria(s): Araujo, Jorge Paulo de
Contribuinte(s)

Souza, Nali de Jesus de

Data(s)

06/06/2007

2003

Resumo

Nesta tese mostramos que uma função de custo contínua e uma tecnologia uniproduto, convexa, monôtona não-crescente e regular implicam que a função de custo mínimo é semicontínua superior em relação ao produto e que a demanda por insumos é fechada. Se a imagem da tecnologia for compacta então a função de custo mínimo é contínua e a demanda por insumos é hemicontínua superior e valor-compacto em relação ao produto. Se a tecnologia possuir a propriedade de ser localmente não-disjunta então a função de custo mínimo é contínua e a demanda por insumos é hemicontínua superior e valorcompacto em relação ao produto. Se a função de custo for monôtona não-decrescente, semicontínua inferior em relação aos contornos inferiores e a tecnologia for uniproduto, convexa, monótona não-crescente, regular, fechada com imagem compacta então a função de custo mínimo é semicontínua inferior em relação ao produto e a demanda ampliada por insumos é hemicontínua superior e valor-compacto em relação ao produto. Se a tecnologia possuir a propriedade de ser localmente não-disjunta então o mesmo resultado é válido. Introduzimos as noções de função monótona não-decrescente e semicontínua inferior em relação aos contornos num espaço topológico ordenado, de correspondência localmente não-disjunta e de demanda ampliada. Mostramos que funções com a propriedade anterior são semicontínuas inferiores e que correspondências convexas localmente não-disjuntas são hemicontínuas inferiores.

Formato

application/pdf

Identificador

http://hdl.handle.net/10183/2796

000376568

Idioma(s)

por

Direitos

Open Access

Palavras-Chave #Economia matematica #Custo #Teoria da firma
Tipo

Tese