Distinct disulfide isomers of μ-Conotoxins KIIIA and KIIIB block voltage-gated sodium channels


Autoria(s): Khoo, Keith K.; Gupta, Kallol; Green, Brad R.; Zhang, Min-Min; Watkins, Maren; Olivera, Baldomero M.; Balaram, Padmanabhan; Toshikami, Doju; Bulaj, Grzegorz; Norton, Raymond S.
Data(s)

01/01/2012

Resumo

In the preparation of synthetic conotoxins containing multiple disulfide bonds, oxidative folding can produce numerous permutations of disulfide bond connectivities. Establishing the native disulfide connectivities thus presents a significant challenge when the venom-derived peptide is not available, as is increasingly the case when conotoxins are identified from cDNA sequences. Here, we investigate the disulfide connectivity of μ-conotoxin KIIIA, which was predicted originally to have a [C1–C9,C2–C15,C4–C16] disulfide pattern based on homology with closely related μ-conotoxins. The two major isomers of synthetic μ-KIIIA formed during oxidative folding were purified and their disulfide connectivities mapped by direct mass spectrometric collision-induced dissociation fragmentation of the disulfide-bonded polypeptides. Our results show that the major oxidative folding product adopts a [C1–C15,C2–C9,C4–C16] disulfide connectivity, while the minor product adopts a [C1–C16,C2–C9,C4–C15] connectivity. Both of these peptides were potent blockers of NaV1.2 (Kd values of 5 and 230 nM, respectively). The solution structure for μ-KIIIA based on nuclear magnetic resonance data was recalculated with the [C1–C15,C2–C9,C4–C16] disulfide pattern; its structure was very similar to the μ-KIIIA structure calculated with the incorrect [C1–C9,C2–C15,C4–C16] disulfide pattern, with an α-helix spanning residues 7–12. In addition, the major folding isomers of μ-KIIIB, an N-terminally extended isoform of μ-KIIIA identified from its cDNA sequence, were isolated. These folding products had the same disulfide connectivities as μ-KIIIA, and both blocked NaV1.2 (Kd values of 470 and 26 nM, respectively). Our results establish that the preferred disulfide pattern of synthetic μ-KIIIA and μ-KIIIB folded in vitro is 1–5/2–4/3–6 but that other disulfide isomers are also potent sodium channel blockers. These findings raise questions about the disulfide pattern(s) of μ-KIIIA in the venom of Conus kinoshitai; indeed, the presence of multiple disulfide isomers in the venom could provide a means of further expanding the snail’s repertoire of active peptides.

Identificador

http://hdl.handle.net/10536/DRO/DU:30063785

Idioma(s)

eng

Publicador

American Chemical Society

Relação

http://dro.deakin.edu.au/eserv/DU:30063785/khoo-distinctdisulfide-2012.pdf

http://dx.doi.org/10.1021/bi301256s

Direitos

2012, ACS Publications

Tipo

Journal Article