Fish assemblage response to rehabilitation of a sand-slugged lowland river


Autoria(s): Howson, T. J.; Robson, B. J.; Mitchell, B. D.
Data(s)

01/12/2009

Resumo

The impact of excessive sediment supply on river channels has been  described in many areas of the world. Sediment deposition disturbance alters habitat  structure by decreasing channel depth, changing substrate composition and burying woody debris. River rehabilitation is occurring worldwide, but information is scant on fish assemblage responses to rehabilitation in sedimentdisturbed lowland rivers. Sediment removal and large woody debris (LWD) replacement  were used to experimentally rehabilitate habitat along a 1500m stretch of the Glenelg River in western Victoria, Australia. Using an asymmetrical before-after control-impact (BACI) design, fish were captured before and after the reach was rehabilitated, from two control reaches and from a ‘higher quality’ reference reach. After two years post-rehabilitation monitoring, the fish assemblage at the rehabilitated reach did not differ from control reaches. Temporal changes in taxa richness and the abundance of <i>Philypnodon grandiceps, Nannoperca spp</i>. and three angling taxa occurred after rehabilitation (winter 2003) compared with the before period (winter 2002), but these effects did not differ between rehabilitated and control locations. Highest taxa richness and abundances occurred at the reference location. High salinity coincided with the timing of rehabilitation works, associated with low river discharges due to drought. The negative effects of other large-scale disturbances may have impaired the effectiveness of reachscale rehabilitation or the effects of rehabilitation may take longer than two years to develop in a lowland river subjected to multiple environmental disturbances.

Identificador

http://hdl.handle.net/10536/DRO/DU:30021355

Idioma(s)

eng

Publicador

John Wiley & Sons Ltd

Relação

http://dro.deakin.edu.au/eserv/DU:30021355/Howson_FishAssemblageResponse_2009.pdf

http://dx.doi.org/10.1002/rra.1226

Direitos

2009, John Wiley & Sons Ltd

Palavras-Chave #fish habitat #sediment #BACI #restoration ecology #large woody debris #snags
Tipo

Journal Article