An improved purification procedure for cyclosporine synthetase


Autoria(s): Velkov, Tony; Singaretnam, Lloyd George; Lawen, Alfons
Data(s)

01/02/2006

Resumo

We have developed expedient and reliable methods to isolate cyclosporin synthetase for in vitro biosynthesis of cyclosporins. We have examined enzyme purification strategies suited to large-scale processing and present a chromatographic sequence that serves as a pilot model for industrial scale preparation of cyclosporin synthetase from cyclosporin producing fungi. A chromatographic sequence consisting of ammonium sulfate precipitation → gel filtration → hydrophobic interaction chromatography → anion exchange chromatography, yielded an electrophoretically homogeneous cyclosporin synthetase preparation (Coomassie G-250 brilliant blue staining). Furthermore, a native polyacrylamide gel electrophoresis system was developed for the isolation of active cyclosporin synthetase enzyme from crude extracts of cyclosporin producing fungi. The environmental factors affecting enzyme stability and the continuity of the in vitro cyclosporin biosynthetic reaction-temperature, pH, and substrate depletion were assessed and manageable conditions have been defined for sustainable cyclosporin biosynthesis with enzyme isolates. Cyclosporin synthetase exhibited an optimal temperature range of 24–29 °C and a pH optimum of 7.6. The native enzyme displayed a pI of 5.7, as determined by isoelectric focusing. The industrial implementation of an in vitro biosynthetic approach could potentially prove useful for the production of important therapeutic cyclosporins which occur as only minor fermentation by-products.<br />

Identificador

http://hdl.handle.net/10536/DRO/DU:30019355

Idioma(s)

eng

Publicador

Academic Press

Relação

http://dro.deakin.edu.au/eserv/DU:30019355/velkov-animprovedpurification-2006.pdf

http://dx.doi.org/10.1016/j.pep.2005.07.012

Direitos

2005, Elsevier

Palavras-Chave #cyclosporin synthetase #non-ribosomal peptide synthetase #antibiotic biosynthesis #in vitro enzymatic biosynthesis #large-scale protein purification #fungal biotechnology #tolypocladium inflatum
Tipo

Journal Article