Triply periodic minimal surfaces which converge to the Hoffman-Wohlgemuth example
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
We get a continuous one-parameter new family of embedded minimal surfaces, of which the period problems are two-dimensional. Moreover, one proves that it has Scherk`s second surface and Hoffman-Wohlgemuth`s example as limit-members. Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP[00/07090-5] FAPESP[01/05845-1] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP[05/00026-3] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) |
Identificador |
ADVANCES IN GEOMETRY, v.10, n.4, p.587-602, 2010 1615-715X http://producao.usp.br/handle/BDPI/30713 10.1515/ADVGEOM.2010.033 |
Idioma(s) |
eng |
Publicador |
WALTER DE GRUYTER & CO |
Relação |
Advances in Geometry |
Direitos |
restrictedAccess Copyright WALTER DE GRUYTER & CO |
Palavras-Chave | #ENDS #CURVATURE #Mathematics |
Tipo |
article original article publishedVersion |