Triply periodic minimal surfaces which converge to the Hoffman-Wohlgemuth example


Autoria(s): SIMOES, Plinio; BATISTA, Valerio Ramos
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

We get a continuous one-parameter new family of embedded minimal surfaces, of which the period problems are two-dimensional. Moreover, one proves that it has Scherk`s second surface and Hoffman-Wohlgemuth`s example as limit-members.

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP[00/07090-5]

FAPESP[01/05845-1]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP[05/00026-3]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Identificador

ADVANCES IN GEOMETRY, v.10, n.4, p.587-602, 2010

1615-715X

http://producao.usp.br/handle/BDPI/30713

10.1515/ADVGEOM.2010.033

http://dx.doi.org/10.1515/ADVGEOM.2010.033

Idioma(s)

eng

Publicador

WALTER DE GRUYTER & CO

Relação

Advances in Geometry

Direitos

restrictedAccess

Copyright WALTER DE GRUYTER & CO

Palavras-Chave #ENDS #CURVATURE #Mathematics
Tipo

article

original article

publishedVersion