Finite determinacy and Whitney equisingularity of map germs from C(n) to C(2n-1)


Autoria(s): PEREZ, V. H. Jorge; NUNO-BALLESTEROS, J. J.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

We show that a holomorphic map germ f : (C(n), 0) -> (C(2n-1), 0) is finitely determined if and only if the double point scheme D(f) is a reduced curve. If n >= 3, we have that mu(D(2)(f)) = 2 mu(D(2)(f)/S(2))+C(f)-1, where D(2)(f) is the lifting of the double point curve in (C(n) x C(n), 0), mu(X) denotes the Milnor number of X and C(f) is the number of cross-caps that appear in a stable deformation of f. Moreover, we consider an unfolding F(t, x) = (t, f(t)(x)) of f and show that if F is mu-constant, then it is excellent in the sense of Gaffney. Finally, we find a minimal set of invariants whose constancy in the family f(t) is equivalent to the Whitney equisingularity of F. We also give an example of an unfolding which is topologically trivial, but it is not Whitney equisingular.

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

CAPES[3131/041]

DGICYT[MTM2006-06027]

DGICYT

Identificador

MANUSCRIPTA MATHEMATICA, v.128, n.3, p.389-410, 2009

0025-2611

http://producao.usp.br/handle/BDPI/28856

10.1007/s00229-008-0240-5

http://dx.doi.org/10.1007/s00229-008-0240-5

Idioma(s)

eng

Publicador

SPRINGER

Relação

Manuscripta Mathematica

Direitos

restrictedAccess

Copyright SPRINGER

Palavras-Chave #POLAR MULTIPLICITIES #CURVE SINGULARITIES #EULER OBSTRUCTION #MILNOR NUMBER #DEFORMATIONS #INVARIANTS #Mathematics
Tipo

article

original article

publishedVersion