On the nature of large-scale mixing in the stratosphere and mesosphere


Autoria(s): Shepherd, Theodore G.; Koshyk, John N.; Ngan, Keith
Data(s)

2000

Resumo

Studies of tracer transport in the stratosphere have shown that adiabatic quasi-horizontal tracer evolution is controlled primarily by the large-scale low-frequency component of the flow. This behavior is consistent with the concept of chaotic advection, wherein the Eulerian velocity field is spatially coherent and temporally quasi-regular on timescales over which the Lagrangian evolution is chaotic. In this study, winds from a middle atmosphere general circulation model (the Canadian Middle Atmosphere Model) are used to compare and contrast the nature of tracer evolution in the stratosphere and mesosphere. It is found that the concept of chaotic advection is relevant in the stratosphere but not in the mesosphere. The explanation for this behavior is the increased strength of gravity wave activity in the mesosphere as compared with the stratosphere, which leads to shallower kinetic energy spectra on synoptic scales and a much shorter Eulerian correlation time. The shallower kinetic energy spectra imply that tracer evolution in the mesosphere is spectrally local, in contrast with the spectrally nonlocal regime that prevails in the stratosphere. This means that tracer advection calculations in the mesosphere are controlled primarily by the gravity wave spectrum and are intrinsically resolution dependent.

Formato

text

Identificador

http://centaur.reading.ac.uk/32852/1/ShepherdJGR2000.pdf

Shepherd, T. G. <http://centaur.reading.ac.uk/view/creators/90004685.html>, Koshyk, J. N. and Ngan, K. (2000) On the nature of large-scale mixing in the stratosphere and mesosphere. Journal of Geophysical Research, 105 (D10). pp. 12433-12446. ISSN 0148-0227 doi: 10.1029/2000JD900133 <http://dx.doi.org/10.1029/2000JD900133>

Idioma(s)

en

Publicador

American Geophysical Union

Relação

http://centaur.reading.ac.uk/32852/

creatorInternal Shepherd, Theodore G.

http://dx.doi.org/10.1029/2000JD900133

10.1029/2000JD900133

Tipo

Article

PeerReviewed