Spectrum of a Feinberg-Zee random hopping matrix


Autoria(s): Chandler-Wilde, Simon; Davies, E. B.
Data(s)

2012

Resumo

This paper provides a new proof of a theorem of Chandler-Wilde, Chonchaiya, and Lindner that the spectra of a certain class of infinite, random, tridiagonal matrices contain the unit disc almost surely. It also obtains an analogous result for a more general class of random matrices whose spectra contain a hole around the origin. The presence of the hole forces substantial changes to the analysis.

Formato

text

Identificador

http://centaur.reading.ac.uk/27339/1/Spectrum_of_a_Feinberg-Zee.pdf

Chandler-Wilde, S. <http://centaur.reading.ac.uk/view/creators/90000890.html> and Davies, E. B. (2012) Spectrum of a Feinberg-Zee random hopping matrix. Journal of Spectral Theory, 2 (2). pp. 147-179. ISSN 1664-0403 doi: 10.4171/JST/25 <http://dx.doi.org/10.4171/JST/25>

Idioma(s)

en

Publicador

European Mathematical Society

Relação

http://centaur.reading.ac.uk/27339/

creatorInternal Chandler-Wilde, Simon

10.4171/JST/25

Tipo

Article

PeerReviewed