Efectos de la simpatectomía torácica sobre la pletismografía de los miembros superiores en sujetos con hiperhidrosis palmar


Autoria(s): Pérez Coronado, Juan David; Arias Duran, Carlos Arturo; Arias, Juan Manuel; Echeverri, Dario; Cedano, Francisco Javier; Téllez, Luis Jaime; Garzón, Juan Carlos; Osorio, Camilo
Contribuinte(s)

Montes, Felix Ramón

Data(s)

30/01/2015

31/12/1969

Resumo

Introducción: La simpatectomía es el tratamiento de la hiperhidrosis palmar y consiste en denervación simpática de miembros superiores que produce un efecto en el flujo sanguíneo al impactar la respuesta vasoconstrictora. El cambio en el flujo sanguíneo se puede evaluar a través de la onda fotopletismográfica. Metodología: Se realizaron 2 sesiones (presimpatectomía y postsimpatectomía) de 10 minutos en cada miembro superior en 28 pacientes obteniendo 79 señales fotopletismográficas distribuidas así: 37 presimpatectomía y 42 señales postsimpatectomía. De cada señal se analizó 1.5 minutos donde se tienen 80 ondas de fotopletismografía y se miden 6 variables: 1. Componente AC (componente pulsátil), 2. Componente DC (componente no pulsátil), 3. Relación entre AC/DC (índice de perfusión), 4. Area bajo la curva (AUC), 5. Tiempo entre el inicio de la onda y pico sistólico (T_DA) y 6. Tiempo entre cada onda de pulso (T_DD). Resultados: Aumentó 120% el componente AC y disminuyó 78% en DC del miembro superior derecho (MSD) con 99% de confiabilidad (p<0.001) entre presimpatectomía (n=18) y postsimpatectomía (n=21). AC/DC aumentó 55% con 95% de confiabilidad entre presimpatectomía (n=19) y postsimpatectomía (n=21) en el miembro superior izquierdo (p<0.05). No se encontró diferencia para T_DA, T_DD ni AUC. Discusión y Conclusión: La simpatectomía en pacientes con hiperhidrosis palmar produce un cambio en el flujo sanguíneo de los miembros superiores evidenciado por los cambios en el componente no pulsátil (DC) y pulsátil (AC) que es secundario a la vasodilatación consecuencia del bloqueo simpático por la denervación quirúrgica de los ganglios simpáticos torácicos.

Introduction: Sympathectomy is used for the treatment of palmar hyperhidrosis with sympathetic denervation in upper limbs. It has an effect on blood flow because of it’s impact in vasoconstrictor response. The change in blood flow can be evaluated through the photoplethysmographic waveform. Methodology: 2 sessions (preoperative and postoperative) were performed for 10 minutes in each upper limb in 28 patients obtaining 79 photoplethysmographic signals: 37 presympathectomy and 42 postsympathectomy. Each signal was analyzed for 1.5 minutes. We obtained 80 waves and measured 6 variables: 1. AC component (pulsatile component), 2. Component DC (non-pulsatile component), 3. Ratio AC / DC (perfusion index), 4. Area under the curve (AUC), 5. time between the start of the peak systolic wave (T_DA) and 6. Time between pulse wave (T_DD). Results: AC increased 120% and DC decreased 78% of the right upper extremity (RUE) with a 99% confiability (p <0.001) between presympathectomy (n=18) and postsympathectomy (n=21). AC/DC increased 55% with a 95% confiability between presympathectomy (n=19) and post-sympathectomy (n=21) in the left upper extremity (p <0.05). No difference in T_DA, T_DD or AUC was observed. Discussion and Conclusion: Sympathectomy in patients with palmar hyperhidrosis causes a change in blood flow to the upper limbs as evidenced by the changes in non- pulsatile (DC) and pulsatil component (AC). This change may be secondary to vasodilation due to surgical sympathetic denervation of the thoracic sympathetic ganglia.

Formato

application/pdf

Identificador

http://repository.urosario.edu.co/handle/10336/10185

Idioma(s)

spa

Publicador

Facultad de Medicina

Direitos

info:eu-repo/semantics/embargoedAccess

Fonte

instname:Universidad del Rosario

reponame:Repositorio Institucional EdocUR

Cerfolio RJ. The Society of Thoracic Surgeons expert consensus for the surgical treatment of hyperhidrosis. Ann Thorac Surg 2011; 91(5):1642-8.

Adar R. Palmar hyperhidrosis and its surgical treatment: a report of 100 cases. Ann Surg 1977;186:34–41.

Leung AK. Hyperhidrosis. Int J Dermatol 1999;38:561–7.

Strutton DR. US prevalence of hyperhidrosis and impact on individ-uals with axillary hyperhidrosis: results from a national survey. J Am Acad Dermatol 2004;51:241–8.

Lonsdale-Eccles A. Axillary hyperhidrosis: ecrine or apocrine? Clin Exp Dermatol 2008;28:2–7

Ro KM. Palmar hyperhidrosis: evidence of genetic transmission. J Vasc Surg 2002;35:382– 6.

Krasna MJ. Thoracoscopic sympathectomy. Surg Laparosc Endosc Percutan Tech 2000;10(5):314–8.

Bejarano B. Thoracoscopic sympathectomy: a literature review. Neurocirugia (Astur) 2010;21(1):5-13.

Dumont P. Side effects and complications of surgery for hyperhidrosis. Thorac Surg Clin 2008;18(2):193-207.

Reisner A. Utility of the photoplethysmogram in circulatory monitoring. Anesthesiology 2008;108(5):950-8.

Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas 2007;28(3):R1-R39. En: Aldama A, Álvarez H, Rodríguez A, Reyes B.

Talke P. The effects of sympathectomy on finger photoplethysmography and temperature measurements in healthy subjects. Anesth Analg. 2011 Jul;113(1):78-83.

Snapir A. Effects of nitric oxide synthase inhibition on dexmedetomidine- induced vasoconstriction in healthy human volunteers. Br J Anaesth 2009;102:38–46

Talke P. Alpha-2B adrenoceptor polymorphism and peripheral vasoconstriction. Pharmacogenet Genomics 2005;15:357– 63.

Ginosar Y. Pulse oximeter perfusion index as an early indicator of sympathectomy after epidural anesthesia. Acta Anaesthesiol Scand 2009;53:1018–26

Galvin EM. Peripheral flow index is a reliable and early indicator of regional block success. Anesth Analg 2006;103: 239–43

Eisuke A, Masafumi W, Issei K. The Relationship between Vascular Function and the Autonomic Nervous System. Ann Vasc Dis Vol. 7, No. 2; 2014: 109–119

Babchenko D. Photoplethysmographic measurement of changes in total and pulsatile tissue blood volume, following sympathetic blockade. Physiol Meas 2001;22:389–96

Klodell C. Oximetry-derived perfusion index for intraoperative identification of successful thoracic sympathectomy. Ann Thorac Surg 2005;80:467–70.

Ellison J. Sympathetic nerve pathways to the human heart and their variations. Am J Anat 1969;124:149—62.

Riet M. Prevention of compensatory hyperhidrosis after thoracoscopic sympathectomy for hyperhidrosis. Surg Endosc. 2001;15:1159-62.

Kawashima T. The autonomic nervous system of the human heart with special reference to its origin, course, and peripheral distribution. Anatomy and Embryology. July 2005, Volume 209, Issue 6, p 425-438.

Cruz J. Cardiopulmonary effects following endoscopic thoracic sympathectomy for primary hiperhidrosis. European Journal of Cardio-thoracic Surgery 36 (2009) 491—496.

Noppen M. Changes in cardiocirculatory autonomic function after thoracoscopic upper dorsal sympathicolysis for essential hyperhidrosis. J Auton Nerv Syst 1996;12(60):115-20.

Ponce M. Long-term cardiopulmonary function after thoracic sympathectomy: Comparison between the conventional and simplified techniques. The Journal of Thoracic and Cardiovascular Surgery, Volume 139, Number 2.

Nitzan M. Respiration induced changes in tissue blood volume distal to occluded artery, measured by photoplethysmography. J Biomed Opt 2006; 11:040506.

Godje O. Reliability of a new algorithm for continuous cardiac output determination by pulse- contour analysis during hemodynamic instability. Crit Care Med 2002;30(1):52-8

Lu W. Researchonthe main elements influencing blood pressure measurement by pulse wave velocity. Front Med Biol Eng 1992; 4:189–99

TEME

Palavras-Chave #617.96 #Anestesiología #Simpatectomía torácica #Pletismografía #Hiperhidrosis palmar #Sympathectomy #palmar hyperhidrosis #photoplethysmography
Tipo

info:eu-repo/semantics/bachelorThesis

info:eu-repo/semantics/acceptedVersion