Conocimiento matem??tico para la ense??anza en bachillerato : un estudio de dos casos


Autoria(s): Sosa Guerrero, Leticia
Contribuinte(s)

Carrillo Ya??ez, Jos??

Universidad de Huelva. Departamento de Did??ctica de las Ciencias y Filosof??a; Campus de 'El Carmen' Avenida de las Fuerzas Armadas, s. n.; 21071 Huelva; +34959219246; +34959219247;

Data(s)

14/05/2013

14/05/2013

2011

07/10/2012

Resumo

Los objetivos est??n formulados a partir de dos problem??ticas: una social y una te??rica. La social, se refiere a la notoria ausencia de una instituci??n que tenga la encomienda de reglar la consistencia de la formaci??n (inicial y continua) de los profesores de bachillerato. La te??rica, la ausencia de un modelo te??rico que describa espec??ficamente el CME (Conocimiento Matem??tico para la Ense??anza) en bachillerato. Es a trav??s de estas dos problem??ticas y con esos cimientos ideol??gicos donde se identifica el problema de investigaci??n que consiste en la comprensi??n del CME del profesor en bachillerato, como un primer paso para atender a una necesidad social y aportar elementos para el modelo te??rico del CME del profesor de bachillerato. El m??todo consiste en un estudio de dos casos, y la t??cnica est?? constituida tanto por la obtenci??n de la informaci??n cualitativa (observaci??n de aula, notas de campo, cuestionarios y entrevista semi-estructurada), como por el instrumento de an??lisis de la informaci??n. Participan dos profesoras de bachillerato que por cuestiones ??ticas se nombran con los seud??nimos Emi y Aly. Las dos profesoras se seleccionan de manera intencional, pues a diferencia de buscar una muestra aleatoria, se busca a dos profesores (sin preferencia de g??nero, al final se logra encontrar a dos profesoras) que pueden dar informaci??n al objetivo trazado en la investigaci??n, es decir, profesores que impartieran matem??ticas preferentemente en el ??ltimo a??o de bachillerato, reconocidos en su ??mbito como excelentes profesionales por parte de sus colegas, por su instituci??n y por sus propios alumnos y que estuvieran dispuestos a colaborar en la investigaci??n, aportando (impl??cita o expl??citamente) elementos sobre el CME en bachillerato. La recogida de la informaci??n con cada profesora es a trav??s de: Observaciones de aula - Notas de campo - Cuestionarios - Entrevista semi-estructurada. Las clases grabadas en video y posteriormente las transcripciones de ??stas, son la fuente principal para analizar la informaci??n. Para organizar la informaci??n de las transcripciones y poder analizarlas, se utiliza un primer instrumento, obtenido de una adaptaci??n realizada al modelo propuesto por Ribeiro para modelar la ense??anza. Y por otro lado, para identificar los subdominios del CME se usa el modelo del CME propuesto por Ball et al.. Los conocimientos propuestos en los descriptores referentes a distintos subdominios del CME incluyen saber la definici??n del concepto, regla, propiedad, teorema o m??todo; saber usar los t??rminos y notaci??n matem??tica formal; saber que la notaci??n es muy importante en matem??ticas; saber hacer la parte mec??nica o procedimental (hacer operaciones, aplicar propiedades, etc.) del contenido que est?? presentando y de temas de cursos anteriores que se utilizan en el nuevo contenido; adem??s de saber hacer la demostraci??n de un teorema o una regla. Una de las problem??ticas que se plantea consiste en la ausencia de una formaci??n inicial y continua planteada espec??ficamente para profesores de matem??ticas de bachillerato. La mayor??a de las ofertas de formaci??n que ofrecen algunas escuelas o instituciones para la formaci??n de profesores en servicio de este gremio corresponden m??s a cursos de capacitaci??n y actualizaci??n que son puntuales m??s que continuos y en ocasiones m??s aislados que hilados conceptualmente. Subrayar la notoria ausencia de un organismo, instituci??n o colegiado que vigile o tenga la encomienda de reglar, ordenar y monitorear la consistencia de la secuenciaci??n y del seguimiento de esa secuencia de los temas y cursos ofrecidos para su formaci??n. Por tanto, no es descabellado admitir la escasez de propuestas formativas dise??adas primordialmente o esencialmente para profesores de bachillerato. Se podr??a continuar investigando, en conocer el papel de las creencias, afectos y valores en el desarrollo del conocimiento did??ctico del contenido (CDC) del profesor y en determinar si los componentes del CDC son dependientes de los paradigmas de ense??anza-aprendizaje asumidos. Estas dos cuestiones parecen influir de manera considerable en la forma de presentar y representar el contenido a ense??ar, por eso la insistencia en atender esas cuestiones en futuras investigaciones sobre el CME del profesor de bachillerato.

Identificador

p. 494-507

978-84-15147-53-4

http://rabida.uhu.es/dspace/bitstream/handle/10272/4509/b16167016-1.pdf?sequence=2

http://rabida.uhu.es/dspace/bitstream/handle/10272/4509/b16167016-2.pdf?sequence=3

http://hdl.handle.net/11162/2926

H-56-2011

Idioma(s)

spa

Publicador

Huelva : Universidad de Huelva, 2011

Direitos

Cuando no se especifique otra condici??n, los documentos incorporados a Redined a texto completo, se hallan bajo las condiciones de uso de s??lo lectura y ??nicamente podr??n ser citados con reconocimiento del autor(es). Para cualquier otro uso, deber?? solicitarse el permiso del autor (es)

Palavras-Chave #m??todo educativo #formaci??n de profesores #matem??ticas #ciencias de la educaci??n #secundaria segundo ciclo
Tipo

Tesis doctoral