Molecular determinants of congenital hypothyroidism due to thyroid dysgenesis


Autoria(s): Abu-Khudir, Rasha
Contribuinte(s)

Deladoëy, Johnny

Deal, Cheri

Data(s)

07/10/2014

31/12/1969

07/10/2014

22/09/2014

01/04/2014

Resumo

L’hypothyroïdie congénitale par dysgénésie thyroïdienne (HCDT) est la condition endocrinienne néonatale la plus fréquemment rencontrée, avec une incidence d’un cas sur 4000 naissances vivantes. L’HCDT comprend toutes les anomalies du développement de la thyroïde. Parmi ces anomalies, le diagnostic le plus fréquent est l’ectopie thyroïdienne (~ 50% des cas). L’HCDT est fréquemment associée à un déficit sévère en hormones thyroïdiennes (hypothyroïdisme) pouvant conduire à un retard mental sévère si non traitée. Le programme de dépistage néonatal assure un diagnostic et un traitement précoce par hormones thyroïdiennes. Cependant, même avec un traitement précoce (en moyenne à 9 jours de vie), un retard de développement est toujours observé, surtout dans les cas les plus sévères (c.-à-d., perte de 10 points de QI). Bien que des cas familiaux soient rapportés (2% des cas), l’HCTD est essentiellement considérée comme une entité sporadique. De plus, plus de 92% des jumeaux monozygotiques sont discordants pour les dysgénésies thyroïdiennes et une prédominance féminine est rapportée (spécialement dans le cas d’ectopies thyroïdiennes), ces deux observations étant clairement incompatible avec un mode de transmission héréditaire mendélien. Il est donc cohérent de constater que des mutations germinales dans les facteurs de transcription thyroïdiens connus (NKX2.1, PAX8, FOXE1, and NKX2.5) ont été identifiées dans seulement 3% des cas sporadiques testés et furent, de plus, exclues lors d’analyse d’association dans certaines familles multiplex. Collectivement, ces données suggèrent que des mécanismes non mendéliens sont à l’origine de la majorité des cas de dysgénésie thyroïdienne. Parmi ces mécanismes, nous devons considérer des modifications épigénétiques, des mutations somatiques précoces (au stade du bourgeon thyroïdien lors des premiers stades de l’embryogenèse) ou des défauts développementaux stochastiques (c.-à-d., accumulation aléatoire de mutations germinales ou somatiques). Voilà pourquoi nous proposons un modèle «2 hits » combinant des mutations (épi)génétiques germinales et somatiques; ce modèle étant compatible avec le manque de transmission familial observé dans la majorité des cas d’HCDT. Dans cette thèse, nous avons déterminé si des variations somatiques (épi)génétiques sont associées à l’HCTD via une approche génomique et une approche gène candidat. Notre approche génomique a révélé que les thyroïdes ectopiques ont un profil d’expression différent des thyroïdes eutopiques (contrôles) et que ce profil d’expression est enrichi en gènes de la voie de signalisation Wnt. La voie des Wnt est cruciale pour la migration cellulaire et pour le développement de plusieurs organes dérivés de l’endoderme (p.ex. le pancréas). De plus, le rôle de la voie des Wnt dans la morphogénèse thyroïdienne est supporté par de récentes études sur le poisson-zèbre qui montrent des anomalies du développement thyroïdien lors de la perturbation de la voie des Wnt durant différentes étapes de l’organogénèse. Par conséquent, l’implication de la voie des Wnt dans l’étiologie de la dysgénésie thyroïdienne est biologiquement plausible. Une trouvaille inattendue de notre approche génomique fut de constater que la calcitonine était exprimée autant dans les thyroïdes ectopiques que dans les thyroïdes eutopiques (contrôles). Cette trouvaille remet en doute un dogme de l’embryologie de la thyroïde voulant que les cellules sécrétant la calcitonine (cellules C) proviennent exclusivement d’une structure extrathyroïdienne (les corps ultimobranchiaux) fusionnant seulement avec la thyroïde en fin de développement, lorsque la thyroïde a atteint son emplacement anatomique définitif. Notre approche gène candidat ne démontra aucune différence épigénétique (c.-à-d. de profil de méthylation) entre thyroïdes ectopiques et eutopiques, mais elle révéla la présence d’une région différentiellement méthylée (RDM) entre thyroïdes et leucocytes dans le promoteur de FOXE1. Le rôle crucial de FOXE1 dans la migration thyroïdienne lors du développement est connu et démontré dans le modèle murin. Nous avons démontré in vivo et in vitro que le statut de méthylation de cette RDM est corrélé avec l’expression de FOXE1 dans les tissus non tumoraux (c.-à-d., thyroïdes et leucocytes). Fort de ces résultats et sachant que les RDMs sont de potentiels points chauds de variations (épi)génétiques, nous avons lancé une étude cas-contrôles afin de déterminer si des variants génétiques rares localisés dans cette RDM sont associés à la dysgénésie thyroïdienne. Tous ces résultats générés lors de mes études doctorales ont dévoilé de nouveaux mécanismes pouvant expliquer la pathogenèse de la dysgénésie thyroïdienne, condition dont l’étiologie reste toujours une énigme. Ces résultats ouvrent aussi plusieurs champs de recherche prometteurs et vont aider à mieux comprendre tant les causes des dysgénésies thyroïdiennes que le développement embryonnaire normal de la thyroïde chez l’homme.

Congenital hypothyroidism from thyroid dysgenesis (CHTD) is the most common congenital endocrine disorder with an incidence of 1 in 4,000 live births. CHTD includes multiple abnormalities in thyroid gland development. Among them, the most common diagnostic category is thyroid ectopy (~ 50 % of cases). CHTD is frequently associated with a severe deficiency in thyroid hormones (hypothyroidism), which can lead to severe mental retardation if left untreated. The newborn biochemical screening program insures the rapid institution of thyroid hormone replacement therapy. Even with early treatment (on average at 9 d), subtle developmental delay is still be observed in severe cases (i.e., IQ loss of 10 points). Although there have been some reports of familial occurrence (in 2% of the cases), CHTD is mainly considered as a sporadic entity. Furthermore, monozygotic (MZ) twins show a high discordance rate (92%) for thyroid dysgenesis and female predominance is observed in thyroid dysgenesis (especially thyroid ectopy), these two observations being incompatible with simple Mendelian inheritance. In addition, germline mutations in the thyroid related transcription factors NKX2.1, PAX8, FOXE1, and NKX2.5 have been identified in only 3% of sporadic cases and linkage analysis has excluded these genes in some multiplex families with CHTD. Collectively, these data point to the involvement of non-Mendelian mechanisms in the etiology of the majority of cases of thyroid dysgenesis. Among the plausible mechanisms are epigenetic modifications, somatic mutations occurring in the thyroid bud early during embryogenesis, or stochastic developmental events. Hence, we proposed a two-hit model combining germline and somatic (epi)genetic variations that can explain the lack of clear familial transmission of CTHD. In this present thesis, we assessed the role of somatic (epi)genetic variations in the pathogenesis of thyroid dysgenesis via a genome-wide as well as a candidate gene approach. Our genome wide approach revealed that ectopic thyroids show a differential gene expression compared to that of normal thyroids, with enrichment for the Wnt signalling pathway. The Wnt signalling pathway is crucial for cell migration and for the development of several endoderm-derived organs (e.g., pancreas). Moreover, a role of Wnt signalling in thyroid organogenesis was further supported by recent zebrafish studies which showed thyroid abnormalities resulting from the disruption of the Wnt pathway during different steps of organogenesis. Thus, Wnt pathway involvement in the etiology of thyroid ectopy is biologically plausible. An unexpected finding of our genome-wide gene expression analysis of ectopic thyroids was that they express calcitonin similar to normally located (orthotopic) thyroids. Such a finding, although in contradiction with our current knowledge of the embryological development of the thyroid attributes C cell origins to extrathyroidal structures (ultimobrachial bodies) upon fusion with a fully-formed, normally situated gland. Using a candidate gene approach, we were unable to demonstrate any differences in the methylation profile between ectopic and eutopic thyroids, but nevertheless we documented the presence of a differentially methylated region (DMR) between thyroids and leukocytes in the promoter of FOXE1, a gene encoding the only thyroid related transcription factor known to play a crucial role in regulating the migration of the thyroid precursors during development as shown by animal studies. We demonstrated by in vivo and in vitro studies that the methylation status of this DMR is correlated with differential expression of FOXE1 in non-tumoral tissues (thyroids and leukocytes). Knowing that DMRs are hotspots for epi(genetic) variations, its screening among CTHD patients is justifiable in our search for a molecular basis of thyroid dysgenesis, currently underway in a case-control study. The results generated during my graduate studies represent unique and novel mechanisms underlying the pathogenesis of CHTD, the etiology of which is still an enigma. They also paved the way for many future studies that will aid in better understanding both the normal and pathogenic development of the thyroid gland.

Identificador

http://hdl.handle.net/1866/11176

Idioma(s)

en

Palavras-Chave #L’hypothyroïdie congénitale #Dysgénésie thyroïdienne #L’ectopie thyroïdienne #Variations somatiques #La voie de signalisation Wnt #La variabilité du nombre de copies #FOXE1 #Régulation épigénétique #Région différentiellement méthylée (RDM) #Congenital hypothyroidism #Thyroid dysgenesis #Ectopic thyroid #Somatic variations #Wnt signalling pathway #Copy number variants (CNVs) #Calcitonin-producing C cells #Epigenetic regulation #Differentially methylated region (DMR) #Biology - Molecular / Biologie - Biologie moléculaire (UMI : 0307)
Tipo

Thèse ou Mémoire numérique / Electronic Thesis or Dissertation