Regenerative potential of corneal endothelium from patients with fuchs endothelial corneal dystrophy


Autoria(s): Haydari, M. Nour
Contribuinte(s)

Brunette, Isabelle

Proulx, Stéphanie

Data(s)

20/11/2013

31/12/1969

20/11/2013

03/09/2013

01/12/2012

Resumo

La dystrophie cornéenne endothéliale de Fuchs (FECD, pour l’abréviation du terme anglais « Fuchs endothelial corneal dystrophy ») est une maladie de l'endothélium cornéen. Sa pathogenèse est mal connue. Aucun traitement médical n’est efficace. Le seul traitement existant est chirurgical et consiste dans le remplacement de l’endothélium pathologique par un endothélium sain provenant de cornées de la Banque des yeux. Le traitement chirurgical, en revanche, comporte 10% de rejet immunologique. Des modèles expérimentaux sont donc nécessaires afin de mieux comprendre cette maladie ainsi que pour le développement de traitements alternatifs. Le but général de cette thèse est de développer un modèle expérimental de la FECD en utilisant le génie tissulaire. Ceci a été réalisé en trois étapes. 1) Tout d'abord, l'endothélium cornéen a été reconstruit par génie tissulaire en utilisant des cellules endothéliales en culture, provenant de patients atteints de FECD. Ce modèle a ensuite été caractérisé in vitro. Brièvement, les cellules endothéliales cornéennes FECD ont été isolées à partir de membranes de Descemet prélevées lors de greffes de cornée. Les cellules au deuxième ou troisième passages ont ensuite été ensemencées sur une cornée humaine préalablement décellularisée. Suivant 2 semaines de culture, les endothélia cornéens reconstruits FECD (n = 6) ont été évalués à l'aide d'histologie, de microscopie électronique à transmission et d’immunomarquages de différentes protéines. Les endothélia cornéens reconstruits FECD ont formé une monocouche de cellules polygonales bien adhérées à la membrane de Descemet. Les immunomarquages ont démontré la présence des protéines importantes pour la fonctionnalité de l’endothélium cornéen telles que Na+-K+/ATPase α1 et Na+/HCO3-, ainsi qu’une expression faible et uniforme de la protéine clusterine. 2) Deux techniques chirurgicales (DSAEK ; pour « Descemet stripping automated endothelial keratoplasty » et la kératoplastie pénétrante) ont été comparées pour la transplantation cornéenne dans le modèle animal félin. Les paramètres comparés incluaient les défis chirurgicaux et les résultats cliniques. La technique « DSAEK » a été difficile à effectuer dans le modèle félin. Une formation rapide de fibrine a été observée dans tous les cas DSAEK (n = 5). 3) Finalement, la fonctionnalité in vivo des endothélia cornéens reconstruits FECD a été évaluée (n = 7). Les évaluations in vivo comprenaient la transparence, la pachymétrie et la tomographie par cohérence optique. Les évaluations post-mortem incluaient la morphométrie des cellules endothéliales, la microscopie électronique à transmission et des immunomarquage de protéines liées à la fonctionnalité. Après la transplantation, la pachymétrie a progressivement diminué et la transparence a progressivement augmenté. Sept jours après la transplantation, 6 des 7 greffes étaient claires. La microscopie électronique à transmission a montré la présence de matériel fibrillaire sous-endothélial dans toutes les greffes d’endothelia reconstruits FECD. Les endothélia reconstruits exprimaient aussi des protéines Na+-K+/ATPase et Na+/HCO3-. En résumé, cette thèse démontre que les cellules endothéliales de la cornée à un stade avancé FECD peuvent être utilisées pour reconstruire un endothélium cornéen par génie tissulaire. La kératoplastie pénétrante a été démontrée comme étant la procédure la plus appropriée pour transplanter ces tissus reconstruits dans l’œil du modèle animal félin. La restauration de l'épaisseur cornéenne et de la transparence démontrent que les greffons reconstruits FECD sont fonctionnels in vivo. Ces nouveaux modèles FECD démontrent une réhabilitation des cellules FECD, permettant d’utiliser le génie tissulaire pour reconstruire des endothelia fonctionnels à partir de cellules dystrophiques. Les applications potentielles sont nombreuses, y compris des études physiopathologiques et pharmacologiques.

Fuchs endothelial corneal dystrophy (FECD) is a primary disease of the corneal endothelium. Its pathogenesis is poorly understood. No medical treatment is effective. Surgical treatment (the only available treatment) carries 10% of immunogenic rejection. Experimental models are needed in order to better understand the disease and to investigate potential autologous treatments (to prevent immunogenic rejection). The overall goal of this thesis is to develop an experimental model for FECD using tissue engineering. This was achieved in three steps. 1) An in vitro tissue-engineered FECD model was created and characterized. Briefly, Descemet’s membranes from patients with late-stage FECD undergoing Descemet’s Stripping Automated Endothelial Keratoplasty (DSAEK) were used to isolate and culture FECD endothelial cells. Second or third-passaged FECD endothelial cells were seeded on a previously decellularized human cornea. After 2 weeks in culture, TE-FECD corneas (n=6) were assessed using histology, transmission electron microscopy (TEM) and immunofluorescence labeling of various proteins. TE-FECD endothelium yielded a monolayer of polygonal cells well adhered to Descemet’s membrane. The TE-FECD corneal endothelium expressed the function-related proteins Na+-K+/ATPase α1 and Na+/HCO3-. Clusterin expression was faint and uniform. 2) In order to determine the best surgical procedure to transplant the TE-FECD corneas in the feline model, a DSAEK procedure was evaluated and compared to penetrating keratoplasty technique. DSAEK assessments included surgical challenges and clinical outcomes. DSAEK technique was challenging to perform in the feline model. Rapid fibrin formation was observed in all DSAEK cases (n=5). 3) The in vivo functionality of the TE-FECD corneas was assessed. TE-FECD corneas were grafted in the feline model (n=7) using penetrating keratoplasty procedure and observed for seven days. In vivo assessments included transparency, pachymetry, optical coherence tomography, endothelial cell morphometry, TEM and immunostaining of function-related proteins. After transplantation, pachymetry gradually decreased and transparency gradually increased. Seven days after transplantation, 6 out of 7 grafts were clear. Post-mortem TEM showed subendothelial loose fibrillar material deposition in all TE-FECD grafts. The TE grafted endothelium expressed Na+-K+/ATPase and Na+/HCO3-. This thesis demonstrates that endothelial cells from late-stage FECD corneas can be used to engineer a corneal endothelium. Compared to DSEAK, penetrating keratoplasty is a more appropriate procedure for corneal transplantation in the feline model, since the DSAEK procedure in the feline model presently yields inconsistent clinical results. Restoration of corneal thickness and transparency demonstrates that the TE-FECD grafts are functional in vivo. This novel FECD living model suggests a potential role of tissue engineering for FECD cell rehabilitation. Potential applications are numerous, including pathophysiological and pharmacological studies.

Identificador

http://hdl.handle.net/1866/10115

Idioma(s)

en

Palavras-Chave #Dystrophie cornéenne endothéliale de Fuchs #Génie tissulaire #Cellules endothéliales cornéennes #Culture cellulaire #Modèle félin #Transplantation de la cornée #Fuchs endothelial corneal dystrophy #Corneal transplantation #Tissue engineering #Cell culture #Corneal endothelial cells #Feline model #Health Sciences - Ophthalmology / Sciences de la santé - Ophtalmologie (UMI : 0381)
Tipo

Thèse ou Mémoire numérique / Electronic Thesis or Dissertation