Estimación de funciones no lineales en mezclas post-no lineales


Autoria(s): Solé-Casals, Jordi; Jutten, Christian
Contribuinte(s)

Universitat de Vic. Escola Politècnica Superior

Universitat de Vic. Grup de Recerca en Tecnologies Digitals

Simposium de la Unión Científica Internacional de Radio (XXIè : 2007 : Tenerife )

URSI 2007

Data(s)

2007

Resumo

This paper proposes a new method for blindly inverting a nonlinear mapping which transforms a sum of random variables. This is the case of post-nonlinear (PNL) source separation mixtures. The importance of the method is based on the fact that it permits to decouple the estimation of the nonlinear part from the estimation of the linear one. Only the nonlinear part is inverted, without considering on the linear part. Hence the initial problem is transformed into a linear one that can then be solved with any convenient linear algorithm. The method is compared with other existing algorithms for blindly approximating nonlinear mappings. Experiments show that the proposed algorithm outperforms the results obtained with other algorithms and give a reasonably good linearized data

Formato

3 p.

Identificador

http://hdl.handle.net/10854/2850

Idioma(s)

spa

Direitos

Aquest document està subjecte a una llicència Creative Commons:

Palavras-Chave #Funcions
Tipo

info:eu-repo/semantics/conferenceObject