Carleson Measures and Logvinenko-Sereda sets on compact manifolds
Contribuinte(s) |
Universitat de Barcelona |
---|---|
Data(s) |
19/03/2013
|
Resumo |
Given a compact Riemannian manifold $M$ of dimension $m \geq 2$, we study the space of functions of $L^2(M)$generated by eigenfunctions ofeigenvalues less than $L \geq 1$ associated to the Laplace-Beltrami operator on $M$. On these spaces we give a characterization of the Carleson measures and the Logvinenko-Sereda sets. |
Identificador | |
Idioma(s) |
eng |
Publicador |
Walter de Gruyter GmbH & Co. KG. |
Direitos |
(c) Walter de Gruyter GmbH & Co. KG., 2013 info:eu-repo/semantics/openAccess |
Palavras-Chave | #Teoria espectral (Matemàtica) #Anàlisi global (Matemàtica) #Spectral theory (Mathematics) #Global analysis (Mathematics) |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |