Almost sure testability of classes of densities
Contribuinte(s) |
Universitat Pompeu Fabra. Departament d'Economia i Empresa |
---|---|
Data(s) |
15/09/2005
|
Resumo |
Let a class $\F$ of densities be given. We draw an i.i.d.\ sample from a density $f$ which may or may not be in $\F$. After every $n$, one must make a guess whether $f \in \F$ or not. A class is almost surely testable if there exists such a testing sequence such that for any $f$, we make finitely many errors almost surely. In this paper, several results are given that allowone to decide whether a class is almost surely testable. For example, continuity and square integrability are not testable, but unimodality, log-concavity, and boundedness by a given constant are. |
Identificador | |
Idioma(s) |
eng |
Direitos |
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a> |
Palavras-Chave | #Statistics, Econometrics and Quantitative Methods #density estimation #kernel estimate #convergence #testing #asymptotic optimality #minimax rate #minimum distance estimation #total boundedness |
Tipo |
info:eu-repo/semantics/workingPaper |