Optical and mechanical analysis on a biological cell in optical tweezers
Contribuinte(s) |
Sheng, Yunlong |
---|---|
Data(s) |
01/03/2016
|
Resumo |
La réponse mécanique d’une cellule à une force externe permet d’inférer sa structure et fonction. Les pinces optiques s’avèrent une approche particulièrement attrayante pour la manipulation et caractérisation biophysique sophistiquée des cellules de façon non invasive. Cette thèse explore l’utilisation de trois types de pinces optiques couramment utilisées : 1) statiques (static), 2) à exposition partagée (time-sharing) et 3) oscillantes (oscillating). L’utilisation d’un code basé sur la méthode des éléments finis en trois dimensions (3DFEM) nous permet de modéliser ces trois types de piégeage optique afin d’extraire les propriétés mécaniques cellulaires à partir des expériences. La combinaison des pinces optiques avec la mécanique des cellules requiert des compétences interdisciplinaires. Une revue des approches expérimentales sur le piégeage optique et les tests unicellulaires est présentée. Les bases théoriques liant l’interaction entre la force radiative optique et la réponse mécanique de la cellule aussi. Pour la première fois, une simulation adaptée (3DFEM) incluant la diffusion lumineuse et la distribution du stress radiatif permet de prédire la déformation d’une cellule biconcave –analogue aux globules rouges—dans un piège statique double (static dual-trap). À l’équilibre, on observe que la déformation finale est donnée par l’espacement entre les deux faisceaux lasers: la cellule peut être étirée ou même comprimée. L’exposition partagée (time-sharing) est la technique qui permet de maintenir plusieurs sites de piégeage simultanément à partir du même faisceau laser. Notre analyse quantitative montre que, même oscillantes, la force optique et la déformation sont omniprésentes dans la cellule : la déformation viscoélastique et la dissipation de l’énergie sont analysées. Une autre cellule-type, la tige cubique, est étudiée : cela nous permet d’élucider de nouvelles propriétés sur la symétrie de la réponse mécanique. Enfin, l’analyse de la déformation résolue en temps dans un piége statique ou à exposition partagée montre que la déformation dépend simultanément de la viscoélasticité, la force externe et sa forme tridimensionnelle. La technique à force oscillante (oscillating tweezers) montre toutefois un décalage temporel, entre la force et la déformation, indépendant de la forme 3D; cette approche donnerait directement accès au tenseur viscoélastique complexe de la cellule. The mechanical response of a cell to external forces carries information about its structure and function. Because cell manipulation should ideally be non-invasive while performing sophisticated biophysical characterization, the radiation force of optical tweezers has become highly attractive. In this thesis, we explore three types of recently-developed optical tweezers: 1) static, 2) time-sharing and 3) oscillating. Using a full three-dimensional finite element method (3DFEM), modeling of each of these regimes allows us to fit experiments and access the cell mechanical properties. Combining optical trapping with cell mechanics requires interdisciplinary efforts. A survey of the various experimental approaches for optical trapping and measurements on isolated cells is presented. We then lay the theoretical background linking the interaction of optical fields to the cell’s mechanical response. We are the first to implement a 3DFEM calculation including light scattering and the radiation stress distribution to predict the deformation of a biconcave cell –emulating a red blood cell– in static dual-trap optical tweezers. At equilibrium, the final deformation is given by the separation distance of the two trapping beams, revealing how the cell can be elongated or shrunk. Time-sharing optical tweezers realize multiple traps to manipulate objects ranging from macromolecules to biological cells. Our quantitative analysis shows how, although jumping, the local stress and strain is omnipresent in the cell. The viscoelastic object deformation and internal energy dissipation are analyzed. Another cell shape, a cubic rod, is also studied, elucidating novel symmetrical properties of the mechanical response. Finally, the analysis of the time-dependent deformation –creep testing– of a cell in static and time-sharing optical tweezers, shows that deformation of the object depends altogether on the object’s viscoelasticity, significantly on its 3D shape and the mechanical loading. However, dynamic testing with oscillating optical tweezers surprisingly shows a phase shift between the loading stress (external force) and strain (deformation) independent on the 3D cell shape. This is a novel avenue giving access to the cell’s viscoelasticity dynamic complex modulus directly in the time-domain. |
Formato |
application/pdf |
Identificador |
TC-QQLA-32339 |
Idioma(s) |
FR |
Publicador |
Université Laval |
Direitos |
© Ling Yao Yu, 2016 |
Palavras-Chave | #Pinces optiques #Cellules--Propriétés mécaniques #Cellules #Optique |
Tipo |
Electronic Thesis or Dissertation |