Flexible management of bandwidth and redundancy in fieldbuses


Autoria(s): Silva, Valter Filipe Miranda Castelão da
Contribuinte(s)

Fonseca, José

Ferreira, Joaquim José de Castro

Cobertura

Aveiro

Data(s)

19/04/2011

19/04/2011

2010

Resumo

Os sistemas distribuídos embarcados (Distributed Embedded Systems – DES) têm sido usados ao longo dos últimos anos em muitos domínios de aplicação, da robótica, ao controlo de processos industriais passando pela aviónica e pelas aplicações veiculares, esperando-se que esta tendência continue nos próximos anos. A confiança no funcionamento é uma propriedade importante nestes domínios de aplicação, visto que os serviços têm de ser executados em tempo útil e de forma previsível, caso contrário, podem ocorrer danos económicos ou a vida de seres humanos poderá ser posta em causa. Na fase de projecto destes sistemas é impossível prever todos os cenários de falhas devido ao não determinismo do ambiente envolvente, sendo necessária a inclusão de mecanismos de tolerância a falhas. Adicionalmente, algumas destas aplicações requerem muita largura de banda, que também poderá ser usada para a evolução dos sistemas, adicionandolhes novas funcionalidades. A flexibilidade de um sistema é uma propriedade importante, pois permite a sua adaptação às condições e requisitos envolventes, contribuindo também para a simplicidade de manutenção e reparação. Adicionalmente, nos sistemas embarcados, a flexibilidade também é importante por potenciar uma melhor utilização dos, muitas vezes escassos, recursos existentes. Uma forma evidente de aumentar a largura de banda e a tolerância a falhas dos sistemas embarcados distribuídos é a replicação dos barramentos do sistema. Algumas soluções existentes, quer comerciais quer académicas, propõem a replicação dos barramentos para aumento da largura de banda ou para aumento da tolerância a falhas. No entanto e quase invariavelmente, o propósito é apenas um, sendo raras as soluções que disponibilizam uma maior largura de banda e um aumento da tolerância a falhas. Um destes raros exemplos é o FlexRay, com a limitação de apenas ser permitido o uso de dois barramentos. Esta tese apresentada e discute uma proposta para usar a replicação de barramentos de uma forma flexível com o objectivo duplo de aumentar a largura de banda e a tolerância a falhas. A flexibilidade dos protocolos propostos também permite a gestão dinâmica da topologia da rede, sendo o número de barramentos apenas limitado pelo hardware/software. As propostas desta tese foram validadas recorrendo ao barramento de campo CAN – Controller Area Network, escolhido devido à sua grande implantação no mercado. Mais especificamente, as soluções propostas foram implementadas e validadas usando um paradigma que combina flexibilidade com comunicações event-triggered e time-triggered: o FTT – Flexible Time- Triggered. No entanto, uma generalização para CAN nativo é também apresentada e discutida. A inclusão de mecanismos de replicação do barramento impõe a alteração dos antigos protocolos de replicação e substituição do nó mestre, bem como a definição de novos protocolos para esta finalidade. Este trabalho tira partido da arquitectura centralizada e da replicação do nó mestre para suportar de forma eficiente e flexível a replicação de barramentos. Em caso de ocorrência de uma falta num barramento (ou barramentos) que poderia provocar uma falha no sistema, os protocolos e componentes propostos nesta tese fazem com que o sistema reaja, mudando para um modo de funcionamento degradado. As mensagens que estavam a ser transmitidas nos barramentos onde ocorreu a falta são reencaminhadas para os outros barramentos. A replicação do nó mestre baseia-se numa estratégia líder-seguidores (leaderfollowers), onde o líder (leader) controla todo o sistema enquanto os seguidores (followers) servem como nós de reserva. Se um erro ocorrer no nó líder, um dos nós seguidores passará a controlar o sistema de uma forma transparente e mantendo as mesmas funcionalidades. As propostas desta tese foram também generalizadas para CAN nativo, tendo sido para tal propostos dois componentes adicionais. É, desta forma possível ter as mesmas capacidades de tolerância a falhas ao nível dos barramentos juntamente com a gestão dinâmica da topologia de rede. Todas as propostas desta tese foram implementadas e avaliadas. Uma implementação inicial, apenas com um barramento foi avaliada recorrendo a uma aplicação real, uma equipa de futebol robótico onde o protocolo FTT-CAN foi usado no controlo de movimento e da odometria. A avaliação do sistema com múltiplos barramentos foi feita numa plataforma de teste em laboratório. Para tal foi desenvolvido um sistema de injecção de faltas que permite impor faltas nos barramentos e nos nós mestre, e um sistema de medida de atrasos destinado a medir o tempo de resposta após a ocorrência de uma falta.

Distributed embedded systems (DES) have been widely used in the last few decades in several application domains, from robotics, industrial process control, avionics and automotive. In fact, it is expectable that this trend will continue in the next years. In some of these application fields the dependability requirements are very important since the fail to provide services in a timely and predictable manner may cause important economic losses or even put humans in risk. In the design phase it is impossible to predict all the possible scenarios of faults, due to the non deterministic behaviour of the surrounding environment. In that way, the fault tolerance mechanisms must be included in the distributed embedded system to prevent failures occurrence. Also, many application domains require a high available bandwidth to perform the desired functions, or to turn possible the scaling with the addition of new features. The flexibility of a system also plays an important role, since it improves the capability to adapt to the surrounding world, and to the simplicity of the repair and maintenance. The flexibility improves the efficiency of all the system by providing a way to efficiently manage the available resources. This is very important in embedded systems due to the limited resources often available. A natural way to improve the bandwidth and the fault tolerance in distributed systems is to use replicated buses. Commercial and academic solutions propose the use of replicated fieldbuses for a single purpose only, either to improve the fault tolerance or to improve the available bandwidth, being the first the most common. One illustrative exception is FlexRay where the bus replica can be used to improve the bandwidth of the overall system, besides enabling redundant communications. However, only one bus replica can be used. In this thesis, a flexible bus replication scheme to improve both the dependability and the throughput of fieldbuses is presented and studied. It can be applied to any number of replicated buses, provided the required hardware support is available. The flexible use of the replicated buses can achieve an also flexible management of the network topology. This claim has been validated using the Controller Area Network (CAN) fieldbus, which has been chosen because it is widely spread in millions of systems. In fact, the proposed solution uses a paradigm that combines flexibility, time and event triggered communication, that is the Flexible Time- Triggered over CAN network (FTT-CAN). However, a generalization to native CAN is also presented and studied. The inclusion of bus replication in FTT-CAN imposes not only new mechanisms but also changes of the mechanisms associated with the master replication, which has been already studied in previous research work. In this work, these mechanisms were combined and take advantage of the centralized architecture and of the redundant masters to support an efficient and flexible bus replication. When considering the system operation, if a fault in the bus (or buses) occurs, and the consequent error leads to a system failure, the system reacts, switching to a degraded mode, where the message flows that were transmitted in the faulty bus (or buses) change to the non-faulty ones. The central node replication uses a leader-follower strategy, where the leader controls the system while the followers serve as backups. If an error occurs in the leader, a backup will take the system control maintaining the system with the same functionalities. The system has been generalized for native CAN, using two additional components that provide the same fault tolerance capabilities at the bus level, and also enable the dynamic management of the network topology. All the referred proposals were implemented and assessed in the scope of this work. The single bus version of FTT-CAN was assessed using a real application, a robotic soccer team, which has obtained excellent results in international competitions. There, the FTT-CAN based embedded system has been applied in the low level control, where, mainly it is responsible for the motion control and odometry. For the case of the multiple buses system, the assessment was performed in a laboratory test bed. For this, a fault injector was developed in order to impose faults in the buses and in the central nodes. To measure the time reaction of the system, a special hardware has been developed: a delay measurement system. It is able to measure delays between two important time marks for posterior offline analysis of the obtained values.

Doutoramento em Engenharia Electrotécnica

Identificador

http://hdl.handle.net/10773/2235

101200528

Idioma(s)

eng

Publicador

Universidade de Aveiro

Relação

http://opac.ua.pt/F?func=find-b&find_code=SYS&request=000236243

Direitos

openAccess

Palavras-Chave #Engenharia electrotécnica #Sistemas de banda larga #Sistemas distribuídos
Tipo

doctoralThesis