PageRank in Malware Categorization


Autoria(s): Kang, BooJoong; Yerima, Suleiman; McLaughlin, Kieran; Sezer, Sakir
Data(s)

01/10/2015

Resumo

In this paper, we propose a malware categorization method that models malware behavior in terms of instructions using PageRank. PageRank computes ranks of web pages based on structural information and can also compute ranks of instructions that represent the structural information of the instructions in malware analysis methods. Our malware categorization method uses the computed ranks as features in machine learning algorithms. In the evaluation, we compare the effectiveness of different PageRank algorithms and also investigate bagging and boosting algorithms to improve the categorization accuracy.

Formato

application/pdf

Identificador

http://pure.qub.ac.uk/portal/en/publications/pagerank-in-malware-categorization(e18e2747-3802-4b8f-ae27-3ac06b3157fa).html

http://dx.doi.org/10.1145/2811411.2811514

http://pure.qub.ac.uk/ws/files/34369935/racs_2015_b.kang_cr.pdf

https://sites.google.com/site/acmracs2015/home

Idioma(s)

eng

Publicador

Association for Computing Machinery (ACM)

Direitos

info:eu-repo/semantics/openAccess

Fonte

Kang , B , Yerima , S , McLaughlin , K & Sezer , S 2015 , PageRank in Malware Categorization . in RACS: Proceedings of the 2015 Conference on Research in Adaptive and Convergent Systems . Association for Computing Machinery (ACM) , Czech Republic , pp. 291-295 , ACM Research in Adaptive and Convergent Systems 2015 , Prague , Czech Republic , 9-12 October . DOI: 10.1145/2811411.2811514

Tipo

contributionToPeriodical