Extended Tree Augmented Naive Classifier


Autoria(s): de Campos, Cassio P.; Cuccu, Marco; Corani, Giorgio; Zaffalon, Marco
Contribuinte(s)

van der Gaag, Linda C.

Feelders, Ad J.

Data(s)

2015

Resumo

This work proposes an extended version of the well-known tree-augmented naive Bayes (TAN) classifier where the structure learning step is performed without requiring features to be connected to the class. Based on a modification of Edmonds’ algorithm, our structure learning procedure explores a superset of the structures that are considered by TAN, yet achieves global optimality of the learning score function in a very efficient way (quadratic in the number of features, the same complexity as learning TANs). A range of experiments show that we obtain models with better accuracy than TAN and comparable to the accuracy of the state-of-the-art classifier averaged one-dependence estimator.

Identificador

http://pure.qub.ac.uk/portal/en/publications/extended-tree-augmented-naive-classifier(9fff955d-ae86-471a-8850-71d9fa4f6048).html

http://dx.doi.org/10.1007/978-3-319-11433-0_12

Idioma(s)

eng

Publicador

Springer-Verlag

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

de Campos , C P , Cuccu , M , Corani , G & Zaffalon , M 2015 , Extended Tree Augmented Naive Classifier . in L C van der Gaag & A J Feelders (eds) , Probabilistic Graphical Models: 7th European Workshop, PGM 2014, Utrecht, The Netherlands, September 17-19, 2014. Proceedings . vol. LNAI 8754 , Lecture Notes in Artificial Intelligence , vol. LNAI 8794 , Springer-Verlag , pp. 176-189 , 7th European Workshop, PGM 2014 , Utrecht , Netherlands , 17-19 September . DOI: 10.1007/978-3-319-11433-0_12

Tipo

contributionToPeriodical