On supercyclicity of operators from a supercyclic semigroup


Autoria(s): Shkarin, Stanislav
Data(s)

15/10/2011

Resumo

We show that for every supercyclic strongly continuous operator<br/>semigroup $\{T_t\}_{t\geq 0}$ acting on a complex $\F$-space, every<br/>$T_t$ with $t>0$ is supercyclic. Moreover, the set of supercyclic<br/>vectors of $T_t$ does not depend on the choice of $t>0$.

Formato

application/pdf

Identificador

http://pure.qub.ac.uk/portal/en/publications/on-supercyclicity-of-operators-from-a-supercyclic-semigroup(9943726d-393d-4e7a-a1c3-55976e2ac71e).html

http://dx.doi.org/10.1016/j.jmaa.2010.08.033

http://pure.qub.ac.uk/ws/files/2342554/supersemi0.pdf

Idioma(s)

eng

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Shkarin , S 2011 , ' On supercyclicity of operators from a supercyclic semigroup ' Journal of Mathematical Analysis and its Applications , vol 382 , no. 2 , pp. 516-522 . DOI: 10.1016/j.jmaa.2010.08.033

Palavras-Chave #/dk/atira/pure/subjectarea/asjc/2600/2603 #Analysis #/dk/atira/pure/subjectarea/asjc/2600/2604 #Applied Mathematics
Tipo

article