Birkhoff normal forms for Fourier integral operators II


Autoria(s): Sj?strand, J.; Iantchenko, A.
Contribuinte(s)

Institute of Mathematics & Physics (ADT)

Mathematical Modelling of Structures, Solids and Fluids

Data(s)

08/12/2008

08/12/2008

01/11/2001

Resumo

Iantchenko, A.; Sj?strand, J., (2001) 'Birkhoff normal forms for Fourier integral operators II', American Journal of Mathematics 124(4) pp.817-850 RAE2008

We consider the problem of constructing a microlocal logarithm and a normal form for an elliptic semi-classical Fourier integral operator near a fixed point of the corresponding canonical transformation. In [Ia] the canonical transformation was assumed to be of real hyperbolic type. In [IS] this assumption was relaxed considerably, to what we think are the natural conditions.

Peer reviewed

Formato

34

Identificador

Sj?strand , J & Iantchenko , A 2001 , ' Birkhoff normal forms for Fourier integral operators II ' American Journal of Mathematics , vol 124 , no. 4 , pp. 817-850 . DOI: 10.1353/ajm.2002.0022

0002-9327

PURE: 88798

PURE UUID: 9a7dd201-0776-4571-b2d2-a3b34ce00fb6

dspace: 2160/1420

http://hdl.handle.net/2160/1420

http://dx.doi.org/10.1353/ajm.2002.0022

http://dx.doi.org/10.1353/ajm.2002.0022

Idioma(s)

eng

Relação

American Journal of Mathematics

Tipo

/dk/atira/pure/researchoutput/researchoutputtypes/contributiontojournal/article

Article (Journal)

Direitos