高阶无静差采样控制系统的动态综合
Data(s) |
1982
|
---|---|
Resumo |
本文利用“最小响应法”给出了 N≥2阶无静差采样控制系统的设计公式.作者指出:对于某类闭环控制系统,在给定阶跃响应最大超调量σ_(max)的条件下,可以找出最佳比值T/T_(T 为系统的采样周期,T_(?)为对象的不便克服的等效小时间常数之和),使系统获得相应阶最大误差系数 K_(N+1),从而可使系统达到快速精密的控制指标。为了在工程设计中应用方便,文中还给出了二至六阶无静差的σ_(max),T/T_(?),K_(N+1)T(?)最佳参数组,使得这类闭环控制系统的设计最佳化和简易化. In this paper,by using “the fastest response method”,A formula for the design of N≥2 order astatic sampled data control system is proposed.It was shown that for a class of closed loop control systems with a given maximum step response overshoot σ_max,the optimum ratio T/T_(3())(T is the sample period,T_(3()) is the equivalent time constant of the controlled object)could be found,and thus the error coefficient K_(N+1) of corresponding order systems could be obtained with the result of achieving a fast and accurate system.Moreover,a list of optimum parameters σ_(max),T/T_(3(),K_(N+1) T_3()~N had been included to make the optimal design of the closed loop control system easier. |
Identificador | |
Idioma(s) |
中文 |
Tipo |
期刊论文 |