点云数据的曲面重构新算法
Data(s) |
2001
|
---|---|
Resumo |
针对采用视觉测量方式得到的点云数据特点,提出了基于动力学数值仿真的网格曲面逼近方法。依据曲面曲率变化特性,该方法可对点云数据进行自适应压缩,并能显著提高逼近网格的品质,从而实现了点云数据的精确曲面重构。实际的算例结果表明,该方法实用可靠。 For the large-scale data cloud, an algorithm of triangular patch approximation, based on the dynamic simulation, is presented in this paper. According to the change characteristics of surface curvature, the large-scale data cloud can be reduced to the reasonable scale and well-shaped triangles can also be created by this approach. Thus the precise reconstruction of data cloud is realized. The experimental results testify that the approach is feasible. 中科院沈阳自动化研究所开放基金资助项目 |
Identificador | |
Idioma(s) |
中文 |
Palavras-Chave | #数据云 #几何建模 #反求工程 #数据压缩 |
Tipo |
期刊论文 |