非方阵指派问题的求解


Autoria(s): 杨丽英; 韩建达; 聂义勇
Data(s)

2009

Resumo

本文将2类方阵指派问题——极大极小和总体极小指派问题——的矩阵作业解法推广到非方阵情形,即求解任务与人员数目不等的指派问题,且维持矩阵作业法的效率.假定m>n,则按本文行优先选取算法求解m×n非方阵指派问题的最大逻辑运算量为O(mn2),其效率通常与执行一轮覆盖的矩阵作业法相当。

The operations on matrix for both minimax and global-minimum assignment problems of square matrix are applied to those of nonsquare matrix,namely,in the same efficiency with the operations on matrix,both the minimax and global-minimum assignment problems where number of people is unequal to number of tasks are solved. Supposed m > n,the quantity of logical operations to solve the assignment problem of m×n nonsquare matrix with the selection algorithm of precedence rows in this paper is not bigger than O(...

国家863计划资助项目(2007AA041502)

Identificador

http://ir.sia.ac.cn//handle/173321/2403

http://www.irgrid.ac.cn/handle/1471x/171394

Idioma(s)

中文

Palavras-Chave #极大极小指派问题 #总体极小指派问题 #混合整数线性规划 #矩阵作业法 #行优先选取算法
Tipo

期刊论文