空间飞行器编队重构建模与规划方法研究


Autoria(s): 王抒雁
Contribuinte(s)

李磊

Data(s)

04/06/2008

Resumo

编队重构是实现空间飞行器编队飞行的一项关键技术,也是自动导航和控制的重要研究领域,无论在理论研究还是实际应用上都具有重大意义。本论文针对空间飞行器编队重构问题展开了深入的研究:(1)编队重构建模;(2)空间飞行器多轨道规划;(3)空间飞行器时间-燃耗的轨道规划;(4)编队重构的协同规划;(5)考虑燃料均衡的编队重构规划。围绕编队重构建模问题,本论文在分析其特点的基础上,完善了传统的单目标优化模型,加入了现有研究通常忽略的发动机推力的精度约束,提高了模型精度以降低控制反馈误差。另外,还根据航天任务的特点,从多目标优化的角度建模了问题,优化的性能指标包括变轨时间、编队的总燃料消耗和飞行器间的燃料均衡。在多轨道规划的研究中,作者基于进化计算和参数优化方法,提出了一种空间飞行器多轨道规划算法。通过将可行轨道按其空间分布分类,并采用一种多轨道保持技术,使新提出的算法能够获得多条在空间中分布较为离散的最优/近优轨道,并可以方便地根据环境和任务要求设定希望获得的轨道之间的差异。该算法充分利用了编队飞行相对动力学方程的解耦性,简化了问题,提高了计算速度,并使最终轨道的选择更加灵活多样。作者还针对空间飞行器的变轨时间与燃料消耗的关系问题展开了研究,基于小生境进化算法,提出了一种时间-燃耗的轨道规划方法。该方法采用一种变长实值染色体编码方式和特定的种群初始化方法,能使生成的轨道满足各种约束条件,并引入等值分享法保证优秀个体具有较大的选中概率和前沿的多样性。实验表明,该算法能有效地搜索到飞行器变轨的时间-燃耗前沿,一次规划生成多个Pareto最优解,为任务制定者选择最合适的变轨方案提供可靠的依据。在编队的协同规划方面,通过分解空间飞行器编队重构问题,并与协同进化的思想相结合,提出了一种两层结构的飞行器编队重构规划算法。高层算法通过优化构型映射来优化编队的总燃料消耗,实现全局规划并确保飞行器之间保持一定的安全距离以避免相互碰撞;低层规划算法采用多轨道规划方法为各飞行器规划满足约束条件的轨道。该算法不仅实现了多颗飞行器的轨道子种群间的协同进化,还实现了高、低层规划结果的协同进化。由于利用编队的分布式结构实现了并行计算,该算法能解决大型编队重构的协同规划问题。虽然给出的最优解是唯一的,但在规划过程中为各飞行器都生成了多条散布在空间中的轨道,提供了可替换解以保证编队重构任务的顺利执行。最后本论文从多目标优化的角度建模了带燃料均衡的多飞行器编队重构规划问题,初步研究了变轨时间、燃料消耗和飞行器间的燃料均衡三个重要指标之间的关系。通过将进化计算与问题领域的知识相结合,提出了一种最优轨道规划方法,能从上述三个指标的角度分别评价一个变轨方案的最优性,并且计算量较小,一次规划能提供多个最优解决方案,能用于实际规划之前进行简单的估算,十分适合方案设计阶段应用。

Identificador

http://ir.iscas.ac.cn/handle/311060/6420

http://www.irgrid.ac.cn/handle/1471x/143975

Fonte

空间飞行器编队重构建模与规划方法研究.王抒雁[d].中国科学院软件研究所,2008.20-25

Palavras-Chave #空间飞行器 #编队飞行 #编队重构 #轨道规划 #进化计算 #多轨道规划 #协调规划 #多目标优化
Tipo

学位论文