氧化物气敏半导体与H_2O(g)、O_2(g)及还原性气体相互作用的研究
Data(s) |
1986
|
---|---|
Resumo |
本文采用自行设计的均速增加加热电压改变元件温度的方法以及动、静态气敏特性测试方法并借助其它测试手段(X光衍射、BET、扫描电流)系统地研究了表面电导控制型SnO_2系元件和体电导控制型γ-Fe_2O_3元件在变温过程中与H_2O(g)、O_2(g)和还原性气体相互作用的规律。实验结果表明:添加剂Al_2O_3、MgO、Pd、Pt和Sb_2O_3均对元件的体电阴均有调制作用。Al_2O_3是以微粒状存在于元件内,它为元件提供了活化中心,提高了元件的灵敏度。而γ-Fe_2O_3具有超微细结构。SnO_2系元件和γ-FeO_3元件取样电压(V_L)与温度(T)的变化关系在空气和惰性气氛中均是非线性的。材料组份不同的元件,其V_L~T变化规律不同。各元件在空气和惰性气氛中的变化,除阻值不同外,其V_L~T变化规律基本相同。综合考虑添加剂(Al_2O_3、MgO)和气氛(空气、惰性气氛、纯氧气)的影响,SnO_2系元件的V_L~T变化规律不仅是由于氧在元件表面上的吸附及吸附状态的不同所引起,很大程度上取决于元件材料的组成和温度对材料内载流子浓度和逐移率的影响。基于对SnO_2系元件的V_L~T变化规律的分析,γ-Fe_2O_3元件V_L随温度的变化也是由于环境中的氧和材料内载流子迁移率随温度的变化所致。SnO_2系元件和γ-Fe_2O_3元件在不同温度所测的V_L~T变化关系表明:SnO_2元件在低温(<72%RH)条件下,具有与干燥空气中相同的V_L~T变化关系;在高温度(>72%RH)的空气中,H_2O(g)的存在对元件低温区(<100 ℃) (200 ℃-400 ℃)的V_L值均有影响,在低温区的V_L值较干燥空气中的V_L值高;中温区的V_L值较干燥空气中的V_L值低。把在约98%RH的空气和氩气中的V_L~T变化曲线比较表明:中温区的实验现象是由于空气中H_2O(g)与O_2(g)共存所致。γ-Fe_2O_3元件在不同温气气氛中的V_L~T变化规律相同,且在元件工作温度(129 ℃~320 ℃)范围内V_L值相同,但均较干燥空气中该条件下的V_L值高。在实验中亦观察到SnO_2元件在温度低于72%RH中长期放置亦可观察到与实验中温度>72%RH条件下相同的V_L~T变化。SnO_2元件在空气和惰性气氛中对还原性气体均有气敏性。而且在惰性气氛中对微量还原性气体(H_2)的灵敏度比在空气中的灵敏度高。掺贵金属Pd或Pt的SnO_2元件在惰性气氛中,当H_2浓度高于8000ppm时,元件电导突变式增加。我们认为SnO_2系元件在空气中检测还原性气体的工作机理是表面化学反应过程;在惰性气氛中其工作机理是表面解离吸附过程。γ-Fe_2O_3元件在空气中对C_4H_(10)具有较高的选择性。但在惰性气氛中对还原性气体不具有气敏性。我们认为环境中氧是体电导控制型气敏元件气敏性不可缺少的中间媒介。其检测机理是微观可逆氧化-还原过程。 |
Identificador | |
Idioma(s) |
中文 |
Fonte |
氧化物气敏半导体与H_2O(g)、O_2(g)及还原性气体相互作用的研究.张智[d].中国科学院长春应用化学研究所,1986.20-25 |
Tipo |
学位论文 |