电化学电容分析法研究


Autoria(s): 聂蓓
Data(s)

2001

Resumo

生物分子识别及其之间的相互作用是各种生命运动现象的基础,任何分子层次上的生命科学方面的研究归根到底都是生物分子之间或是生物分子和其他有机、无机分子作用的研究。生物体组织的功能化也正是来源于生物分子活性位点的相互识别。例如,蛋白分子的三维结构组装作用,DNA分子之间及DNA和RNA之间的识别作用构成了生命体的遗传信息,酶对底物的专一催化作用,抗原-抗体的特异结合也是建立在对底物分子的结构识别基础上。因而对生物分子识别及相互作用的研究,可以帮助理解生物分子结构和功能及各种生命运动现象的本质。对生物分子识别进行实时,原位的跟踪监测而无需附加其他的标记分子和修饰等手段,一直是分析化学家研究的重点。本研究论文正是基于此研究思想来构造新型电化学分子识别传感器,并对免疫分子识别,金属离子的检测,磷脂仿生膜的离子诱导效应,自组装膜表面酸碱性及溶胶-凝胶内生物分子性质等方面进行了研究。1.利用电化学电容检测技术和实验装置原理,在金属铝片上通过阳极氧化的方法制备了电容测定所需的绝缘层,并以此层作为电化学测定的对电极,对电容测定起到了关键性的稳定作用,同时避免了在工作电极上烦琐的组装,提高了测定的敏感度。利用金属氧化膜为绝缘层,对protein A和小鼠免疫蛋白G的作用,鼠IgG和羊抗鼠IgG在溶液中的相互作用进行了实时的电容信号测定。表明电化学电容方法和测量装置的可行性。2.将功能化的烷基链自组装于电极表面,对其表面的酸碱平衡进行研究,电容分析方法是方便且直接的测量手段。通过对巯基丙酸的自组装电极的表面酸碱滴定及表面P_(ka)值的测定。讨论了界面电容变化的机理和影响因素。研究结果和应用其他方法测定值相一致。3.将磷脂分子和长链烷基硫醇通过疏水作用组装于金电极表面,在钙离子诱导作用下对该体系进行了电化学电容的测量。通过对电容信号的分析,推测钙离子和磷脂分子作用机理。4.将Sol-Gel技术应用于电容测定的绝缘层和生物分子固定化。通过控制硅醇聚合的酸度和时间,形成极小孔洞的致密的网状结构。利用功能化的硅醇,通过自组装技术将上述聚合产物固定于金电极表面,同时将生物分子聚合固定于溶胶表面或包埋于其网格内。对其电容信号的测定结果表明,该体系是良好的电容分析方法的研究基底。以钾离子传感器为例,研究了本体系的实际应用。将谷胱甘肽固定于溶胶表面,对溶液中的钾离子的电容响应进行测量,表明在较高浓度区有很好的线性。

Identificador

http://ir.ciac.jl.cn/handle/322003/34095

http://www.irgrid.ac.cn/handle/1471x/96040

Idioma(s)

中文

Fonte

电化学电容分析法研究.聂蓓[d].中国科学院长春应用化学研究所,2001.20-25

Tipo

学位论文