电化学SPR生物传感器的研究及应用
Data(s) |
27/12/2007
|
---|---|
Resumo |
围绕论文题目“电化学SPR生物传感器的研究及应用”,我们将SPR传感金膜同时用作电化学研究的界面,在自行组建的电化学SPR (EC-SPR)池中进行了相关的EC-SPR研究。 本论文研究工作的主要内容包括以下几个方面: 1. 发展了一种电化学薄化控制SPR金膜厚度,优化SPR信号的方法。这种方法主要是利用在较高电位下金与氯离子发生络合反应使SPR金膜表面的金部分溶解进入溶液从而达到薄化金基底的目的。通过调节溶液中氯离子的浓度和电化学扫描的次数,可以现场调控SPR基底的金膜厚度。我们用这种处理过的金膜进行了生物分子的吸附试验,结果证明了这种处理过的金膜适用于一般的SPR分析。 2. 采用湿化学镀膜法结合光刻法制备SPR金膜微阵列,拟将用于SPR成像分析。这种方法属于湿化学法制备SPR金膜微阵列,主要是在胶体金纳米粒子的自组装膜上刻蚀出金纳米粒子的微阵列,然后用湿化学法生长出合适的金微阵列。这种方法对制备条件要求比较简单,在制备纳米金微阵列的过程中腐蚀时间比较好控制,同时催化生长出新的金面。重复试验证实了这种方法能够制备出稳定的,尺寸可控的金微阵列,有望用于SPR成像系统研究生物分子相互作用。 3. 在SPR金膜表面利用电沉积法制备了超薄的壳聚糖薄膜,并将之应用于生物分子相互作用的研究。通过一步电沉积的方法制备了超薄的壳聚糖修饰的SPR金基片,并研究了几种常见蛋白与壳聚糖薄膜的非特异性作用,进一步用鼠IgG和抗鼠IgG作为一个典型的例子研究了壳聚糖修饰膜的生物相容性。试验表明壳聚糖修饰膜有好的生物相容性。 4. 首次提出利用生物催化沉积金属纳米粒子放大SPR信号测定小分子的方法。生物小分子抗坏血酸能够还原银离子,使其在金纳米表面沉积形成金属银原子。银原子的沉积将会极大地增强SPR信号,从而实现SPR光谱对小分子抗坏血酸浓度的放大测定。每次测定后,通过电化学剥脱Ag原子,SPR芯片的表面能够完全再生。同时,剥脱的银原子的量也能够被电化学测定,这也实现了抗坏血酸的间接电化学测定。 5. 结合电化学和SPR技术表征了DNA/Zr4+多层膜在金膜表面的生长过程,并研究了这种多层膜与细胞色素c的相互作用。SPR技术被用于测定 (DNA/ Zr4+)1双层中DNA单层的有效膜厚,及其表面覆盖率。利用红外反射光谱和X-射线光电子能谱表征这种多层膜的组成。通过EC-SPR方法,这种多层膜和细胞色素c的相互作用被进一步分析。结果表明这种多层膜不仅增强了细胞色素c的固定量,而且保持了细胞色素c的生物活性。 6. 利用EC-SPR技术测定了聚苯胺支撑的双层磷脂膜中的酶促反应。通过泡囊融合法在聚苯胺表面形成HRP掺杂的磷脂双层膜。这种磷脂双层膜能够很好的保存膜内的辣根过氧化酶(HRP)的活性,同时,这种膜允许质子的跨膜传输,能够提供聚苯胺和HRP在双氧水存在下反应所需的质子,实现酶促开关控制聚苯胺氧化还原态的变化,通过SPR检测这种聚苯胺膜的氧化还原态的变化,从而达到利用SPR测定酶底物小分子的目的。 7. 开展了适配子(aptamer)的EC-SPR研究。利用亚甲基兰为外在电化学探针分子,我们设计了一种简单的、可再生的电化学方法测定小分子腺苷。结果表明这种方法对腺苷的检测具有较高的灵敏性和选择性。这种设计思路有望进一步用于构建一个可再生的SPR传感器平台,用于研究适配子与蛋白质相互作用。 |
Identificador | |
Idioma(s) |
中文 |
Fonte |
电化学SPR生物传感器的研究及应用.王建龙[d].中国科学院长春应用化学研究所,2007.20-25 |
Palavras-Chave | #电化学 #表面等离子体共振 #生物传感器 #适配子 |
Tipo |
学位论文 |