支持向量机中引入后验概率的理论和方法研究
Data(s) |
2002
|
---|---|
Resumo |
目前支持向量机解决模式识别问题是广大学者研究的热点,样本的后验概率在模式识别中至关重要,但是传统的支持向量机技术不提供后验概率.针对这一问题进行了3个方面的研究:①在给出样本点后验概率的基础上,将大规模优化问题分解成最大似然函数和最大分类边界两个小规模优化问题;②给出了一种新的用后验概率修正最优分离超平面的方法,并且分析了该新方法的合理性;③用图像分类的3组实例说明本方法的有效性. |
Identificador | |
Idioma(s) |
中文 |
Fonte |
张文生; 王珏; 戴国忠.支持向量机中引入后验概率的理论和方法研究,计算机研究与发展,2002,39(4):392-397 |
Palavras-Chave | #支持向量机 #后验概率 #最优超平面 #Sigmoid函数 |
Tipo |
期刊论文 |