Efeitos genotóxicos e indução do SOS em mutantes derivados de Escherichia coli K-12 durante o processo de interação com superfícies bióticas e abióticas


Autoria(s): Suelen Bozzi Costa
Contribuinte(s)

Ana Luiza de Mattos Guaraldi

Ana Claudia de Paula Rosa Ignacio

Lídia Maria Buarque de Oliveira Asad

Flávio José da Silva Dantas

Marcelo de Pádula

Bianca Cruz Neves

Data(s)

11/12/2012

Resumo

A célula epitelial é o primeiro contato entre os micro-organismos e o hospedeiro. Essa interação pode levar a produção de diversas citocinas, quimiocinas, moléculas inflamatórias e também estimular a geração de espécies reativas de oxigênio (ERO). Neste trabalho avaliamos se a interação com as células HEp-2 poderia ser genotóxica para os mutantes derivados de Escherichia coli K-12 deficientes em algumas enzimas que fazem parte do sistema de reparo por excisão de base (BER). Além disto, avaliamos a expressão do sistema SOS, que é induzido pela presença de danos no genoma bacteriano. Os resultados obtidos mostraram a presença de filamentos, na interação com células HEp-2, principalmente, no mutante xthA (BW9091) e no triplo mutante xthA nfo nth (BW535). Quando a interação foi quantificada na ausência da D-manose, observamos um aumento das bactérias aderidas. Além disto, a quantidade e o tamanho dos filamentos também aumentaram, mostrando que as adesinas manose-sensíveis estavam envolvidas na filamentação bacteriana. Para comprovar se o aumento da filamentação observada neste ensaio foram uma consequência da indução do sistema SOS, desencadeada pela interação com as células HEp-2, quantificamos a expressão do SOS, na presença e na ausência da D-manose. De fato, observamos que a indução do SOS na ausência da D-manose foi maior, quando comparada, com o ensaio realizado na presença de D-manose. Além disto, observamos que a ausência de xthA foi importante para o aumento da filamentação observada na ausência de D-manose. Diante destes resultados, verificamos se a resposta de filamentação ocorreria quando as bactérias interagiam com uma superfície abiótica como o vidro. Observamos também inúmeros filamentos nos mutantes BER, BW9091 e BW535, quando comparados a cepa selvagem AB1157. Essa filamentação foi associada à indução do SOS, em resposta a interação das bactérias com o vidro. Em parte a filamentação e a indução do SOS observadas na interação ao vidro, foram associadas à produção de ERO. Quantificamos também o número de bactérias aderidas e observamos que as nossas cepas formavam biofilmes moderados. Contudo, a formação de biofilme dependia da capacidade da bactéria induzir o sistema SOS, tanto em aerobiose como em anaerobiose. A tensão do oxigênio foi importante para interação dos mutantes BER, uma vez que os mutantes BW9091 e BW535 apresentaram uma quantidade de bactérias aderidas menor em anaerobiose. Contudo, a diminuição observada não estava vinculada a morte dos mutantes BER. Também realizamos microscopia de varredura na cepa selvagem e nos mutantes, BW9091 e BW535 e confirmamos que as três cepas formavam biofilmes tanto em aerobiose como em anaerobiose. Observamos uma estrutura sugestiva de matriz extracelular envolvendo os biofilmes da cepa selvagem AB1157 e do mutante BW9091. No entanto, a formação desta estrutura por ambas as cepas dependia da tensão de oxigênio, pois nos biofilmes formados em anaerobiose essa estrutura estava ausente. Em conclusão, mostramos que na interação das bactérias com a superfície biótica e abiótica, ocorreu lesão no genoma, com indução do SOS e a resposta de filamentação associada.

The epithelial cell is the first contact between microorganisms and host. This interaction results in production of several cytokines, chemokines, and inflammatory molecules by epithelial cells and also stimulate the generation of reactive oxygen species (ROS). In the present study, we have evaluated whether the interaction to HEp-2 cells causes genotoxicity to mutants derived from Escherichia coli K-12 deficient in some enzymes that are part of the system of base excision repair (BER). Moreover, we measured the expression of SOS system, which is induced by the presence of damage to the bacterial genome. Our results showed mainly presence of filamentous bacterial growth in xthA mutant (BW9091) and triple xthA nfo nth mutant (BW535) when submitted to HEp-2 cells interaction assays. When experiments were performed in the absence of mannose, data showed enhanced interaction of viable bacteria to HEp-2 cells for all strains tested. Furthermore, the removal of D-mannose resulted in an increase in both number and size of bacterial filamentous forms, indicating the involvement of mannose-sensitive adhesins in the filamentation of these strains. In order to verify whether the increased filamentation growth in this assay was a consequence of SOS induction, triggered by interaction to HEp-2 cells, we measured expression of SOS in the presence and absence of D-mannose. Indeed, we observed higher expression of SOS response in the absence of mannose than in experiments performed in the presence of D-mannose. Moreover, we observed that the absence of xthA was important to filamentation increasing in absence of D-mannose. Based on these results, we verified if interaction to abiotic surfaces, like glass, could lead to filamentation of these strains. We also observed numerous filaments in BER mutants, BW9091 and BW535, when compared to wild-type strain AB1157. The filamentation observed was a consequence of SOS induction, triggered by attachment to the glass surface. In part, the filamentation and SOS induction observed in these experiments were related to ROS production. We also quantified interacted bacterial cells and it was observed moderated biofilm formation in all strains tested. However, biofilm formation depended on the ability of the bacteria to induce the SOS response, under both aerobic and anaerobic conditions. The oxygen tension was important factor for interaction of the BER mutants, since these mutants exhibited decreased quantitative adherence under anaerobic conditions. However, this decrease was not related to BER mutants death. Scanning electron microscopy was also performed in the wild-type strain and BER mutants (BW9091 e BW535) and biofilm formation was confirmed under both aerobic and anaerobic conditions. We observed a structure similar to a extracellular matrix which involved biofilms of wild type strain (AB1157) and xthA mutant (BW9091). However, the formation of this structure by both strains depended on the oxygen tension, since biofilm formation, under anaerobiosis condition, did not presented this structure. In conclusion, was provided that bacterial interaction to biotic and abiotic surfaces can lead to damage of bacterial genome, resulting in SOS induction and associated filamentation.

Formato

PDF

Identificador

http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=9083

Idioma(s)

pt

Publicador

Biblioteca Digital de Teses e Dissertações da UERJ

Direitos

Liberar o conteúdo dos arquivos para acesso público

Palavras-Chave #Espécies reativas de oxigênio (ERO) #Reparo por excisão de bases (BER) #Sistema SOS #Células HEp-2 #Filamentação #Biofilme #Reactive oxygen species (ROS) #Base excision repair (BER) #SOS system #HEp-2 cells #Filamentation #Biofilms #MICROBIOLOGIA #Escherichia coli - Teses #Espécies reativas de oxigênio #Reparo do DNA - Teses #Mutação - Teses #Genotoxicidade - Teses #Aderências Teses #Biofilme - Teses #Genoma bacteriano
Tipo

Eletronic Thesis or Dissertation

Tese ou Dissertação Eletrônica