Decomposição aleatória de matrizes aplicada ao reconhecimento de faces


Autoria(s): Mauro de Amorim
Contribuinte(s)

Francisco Duarte Moura Neto

Gustavo Mendes Platt

Luiz Mariano Paes de Carvalho Filho

Carlos Eduardo de Souza

Ricardo Fabbri

Data(s)

22/03/2013

Resumo

Métodos estocásticos oferecem uma poderosa ferramenta para a execução da compressão de dados e decomposições de matrizes. O método estocástico para decomposição de matrizes estudado utiliza amostragem aleatória para identificar um subespaço que captura a imagem de uma matriz de forma aproximada, preservando uma parte de sua informação essencial. Estas aproximações compactam a informação possibilitando a resolução de problemas práticos de maneira eficiente. Nesta dissertação é calculada uma decomposição em valores singulares (SVD) utilizando técnicas estocásticas. Esta SVD aleatória é empregada na tarefa de reconhecimento de faces. O reconhecimento de faces funciona de forma a projetar imagens de faces sobre um espaço de características que melhor descreve a variação de imagens de faces conhecidas. Estas características significantes são conhecidas como autofaces, pois são os autovetores de uma matriz associada a um conjunto de faces. Essa projeção caracteriza aproximadamente a face de um indivíduo por uma soma ponderada das autofaces características. Assim, a tarefa de reconhecimento de uma nova face consiste em comparar os pesos de sua projeção com os pesos da projeção de indivíduos conhecidos. A análise de componentes principais (PCA) é um método muito utilizado para determinar as autofaces características, este fornece as autofaces que representam maior variabilidade de informação de um conjunto de faces. Nesta dissertação verificamos a qualidade das autofaces obtidas pela SVD aleatória (que são os vetores singulares à esquerda de uma matriz contendo as imagens) por comparação de similaridade com as autofaces obtidas pela PCA. Para tanto, foram utilizados dois bancos de imagens, com tamanhos diferentes, e aplicadas diversas amostragens aleatórias sobre a matriz contendo as imagens.

Stochastic methods offer a powerful tool for performing data compression and decomposition of matrices. These methods use random sampling to identify a subspace that captures the range of a matrix in an approximate way, preserving a part of its essential information. These approaches compress the information enabling the resolution of practical problems efficiently. This work computes a singular value decomposition (SVD) of a matrix using stochastic techniques. This random SVD is employed in the task of face recognition. The face recognition is based on the projection of images of faces on a feature space that best describes the variation of known image faces. These features are known as eigenfaces because they are the eigenvectors of a matrix constructed from a set of faces. This projection characterizes an individual face by a weighted sum of eigenfaces. The task of recognizing a new face is to compare the weights of its projection with the projection of the weights of known individuals. The principal components analysis (PCA) is a widely used method for determining the eigenfaces. This provides the greatest variability eigenfaces representing information from a set of faces. In this dissertation we discuss the quality of eigenfaces obtained by a random SVD (which are the left singular vectors of a matrix containing the images) by comparing the similarity with eigenfaces obtained by PCA. We use two databases of images, with different sizes and various random sampling applied on the matrix containing the images.

Formato

PDF

Identificador

http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=4819

Idioma(s)

pt

Publicador

Biblioteca Digital de Teses e Dissertações da UERJ

Direitos

Liberar o conteúdo dos arquivos para acesso público

Palavras-Chave #PROBABILIDADE E ESTATISTICA APLICADAS #Decomposição em valores singulares #Análise de componentes principais #Autofaces #Reconhecimento de faces #Decomposição aproximada de matrizes #Métodos estocásticos #Singular value decomposition #Principal component analysis #Eigenfaces #Face recognition #Approximate matrix decompositions #Stochastic methods
Tipo

Eletronic Thesis or Dissertation

Tese ou Dissertação Eletrônica