A Contraction Mapping Approach for Robust Estimation of Lagged Autocorrelation


Autoria(s): Seelamantula, Chandra Sekhar; Shenoy, Ravi R
Data(s)

2014

Resumo

We consider the zero-crossing rate (ZCR) of a Gaussian process and establish a property relating the lagged ZCR (LZCR) to the corresponding normalized autocorrelation function. This is a generalization of Kedem's result for the lag-one case. For the specific case of a sinusoid in white Gaussian noise, we use the higher-order property between lagged ZCR and higher-lag autocorrelation to develop an iterative higher-order autoregressive filtering scheme, which stabilizes the ZCR and consequently provide robust estimates of the lagged autocorrelation. Simulation results show that the autocorrelation estimates converge in about 20 to 40 iterations even for low signal-to-noise ratio.

Formato

application/pdf

Identificador

http://eprints.iisc.ernet.in/49400/1/ieee_sig_pro_let_21-9_1054_2014.pdf

Seelamantula, Chandra Sekhar and Shenoy, Ravi R (2014) A Contraction Mapping Approach for Robust Estimation of Lagged Autocorrelation. In: IEEE SIGNAL PROCESSING LETTERS, 21 (9). pp. 1054-1058.

Publicador

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC

Relação

http://dx.doi.org/10.1109/LSP.2014.2322588

http://eprints.iisc.ernet.in/49400/

Palavras-Chave #Electrical Engineering
Tipo

Journal Article

PeerReviewed