Hyperbolisen geometrian puolitasomalli


Autoria(s): Selin, Jukka
Contribuinte(s)

Helsingin yliopisto, matemaattis-luonnontieteellinen tiedekunta, matematiikan ja tilastotieteen laitos

Helsingfors universitet, matematisk-naturvetenskapliga fakulteten, institutionen för matematik och statistik

University of Helsinki, Faculty of Science, Department of Mathematics and Statistics

Data(s)

07/12/2010

Resumo

Tutkin Pro Gradu työssäni hyperbolista geometriaa puolitasomallin kautta. Tutkielman päätuloksena on osoittaa, että pari (H,dH) on polkumetrinen avaruus. Aloitan tutkielman käsittelemällä puolitasomallia yleisesti. Määrittelen peruskäsitteitä kuten puolitasomallin joukon H ja kaksi eri tyyppistä hyperbolista suoraa. Toisessa luvussa lähden tutkimaan joukkoa nimeltä Riemannin kuula. Kyseinen joukko on oleellinen puolitasomallin tarkastelun kannalta. Riemannin kuulan tarkastelu vie luontevasti tutkimaan Möbius-kuvauksia, jotka säilyttävät hyperbolisen pituuden puolitasomallissa. Nämä kuvaukset ovat tärkeitä kun käsittelen hyperbolista pituutta ja etäisyyttä. Neljännessä luvussa siirryn tarkastelemaan kaaren pituutta kompleksitasossa. Esittelen polun pituuden käsitteen polkuintegraalin avulla. Viidennessä luvussa siirryn tutkimaan kaaren pituutta joukossa H ja määrittelen hyperbolisen pituuden käsitteen. Kuudennessa luvussa esittelen metriikan käsitteen. Tämän lisäksi määrittelen käsitteen polkumetrinen avaruus. Viimeisessä luvussa todistan, että pari (H,dH) on polkumetrinen avaruus. Samalla määrittelen hyperbolisen etäisyyden dH.

Identificador

URN:NBN:fi-fe201106091717

http://hdl.handle.net/10138/26562

Idioma(s)

fi

Publicador

Helsingin yliopisto

Helsingfors universitet

University of Helsinki

Direitos

Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.

Publikationen är skyddad av upphovsrätten. Den får läsas och skrivas ut för personligt bruk. Användning i kommersiellt syfte är förbjuden.

Tipo

Pro gradu

Master's thesis

Pro gradu

Text