999 resultados para yellow clay


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recovery and fate of three species of dinoflagellates, Alexandrium tamarense, Cochlodinium polykrikoides and Scrippsiella trochoidea, after having been sedimented by yellow clay, were investigated in the laboratory. The effect of burying period in yellow clay pellet and mixing on the recovery of settled algal cells were studied. The morphological changes of algal cells in yellow clay pellet were also tracked. Results showed that there was almost no recovery for A. tamarense and C. polykrikoides, and the cells decomposed after 2-3 days after visible changes in morphology and chloroplasts. There was some recovery for S. trochoidea. Moreover, S. trochoidea cysts were formed in clay pellet during the period of about 14 days, with the highest abundance of 87 000 cysts g(-1) clay and the incidence of cyst formation of 6.5%, which was considered as a potential threat for the further occurrence of algal blooms. S. trochoidea cysts were isolated from yellow clay and incubated to test their viability, and a germination ratio of more than 30% was obtained after incubation for 1 month. These results showed the species specificity of the mitigation effect of yellow clay. It is suggested that cautions be taken for some harmful species and thorough risk assessments be conducted before using this mitigation strategy in the field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction of seawater with basalts in DSDP Hole 501 and the upper part of Hole 504B (Costa Rica Rift) produced oxidative alteration and a zonation of clay minerals along cracks. From rock edges to interiors in many cracks the following succession occurs, based on microscopic observations and microprobe analysis: iron hydroxides (red), "protoceladonite" (green), iddingsite (orange), and saponite (yellow). Clay minerals replace olivines and fill vesicles and cracks. Other secondary minerals are phillipsite, aragonite, and unidentified carbonates. Some glass is transformed to Mg-rich palagonite. Bulk rock chemistry is related to the composition of the secondary minerals. The zonation can be interpreted as a succession of postburial nonoxidative and oxidative diagenesis similar to that described in the Leg 34 basalts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To better understand the characteristics of the clay minerals in the southern Yellow Sea, the X-ray quantitative determinations have been carried out for the surface samples obtained from the Yellow Sea. With newly compiled clay mineral synoptic maps, the depositional processes were described for four main clay minerals (illite, chlorite, kaolinite and smectite). The analysis shows that most clay minerals are of terrigenous source with the Huanghe River acting as the major sediment supplier. Besides, the source of muddy sediments in the Yellow Sea was also discussed. As for the central Yellow Sea mud (CYSM), the sediments in its northern part mainly come from the Huanghe River, and those in the rest are of multi-origin. Very similarly, a large amount of sediments in the northern part of the southeastern Yellow Sea Mud (SEYSM) derive from the Keum River and Yeong-san River, while those in the southern part are of multi-origin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The bacterial spot in yellow passion fruit plants, caused by the bacteria Xanthomonas axonopodis pv. passiflorae, occurs in all producing areas of the country, and is responsible for great economic losses in the culture of passion fruit. This study aimed to test the efficiency of the silicate clay in the inhibition of the bacteria Xanthomonas axonopodis pv. passiflorae in vitro, and in both preventive and curative control of the bacterial spot in seedlings of yellow passion fruit plants. The silicate clay was added to the growth medium at concentrations of. 0.5, 1.0, 1.5 and 2.0%, placed in Petri dishes. After the culture medium was cooler, the bacterial suspension was inoculates (10(7) UFC.mL(-1)) with a handle, and left incubating at 28 degrees C for three days, and then the bacterial growth was evaluated. Subsequently, the product at the same concentrations above was sprayed on seedlings of 'Afruvec' passion fruit, as preventive or curative. The inoculation of the bacteria was made by foliar spraying of bacterial suspension (10(7) ufc.mL(-1)), 24 hours before or after the curative and preventive treatments, respectively. The severity of the disease was measured comparing each four true leaves from bottom up, with a diagrammatic scale. In the concentrations evaluated, the silicate clay inhibited both bacteria in vitro and symptoms of bacterial spot in the curative treatment. In preventive treatment, significant results were obtained using more than 1.0% of clay silicates. Based on these results, the clay silicate can be recommended, the concentration of 1.0-2.0% for the control of bacterial spot of passion fruit plants, in foliar sprays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on analyses of more than 600 surface sediment samples together with large amounts of previous sedimentologic and hydrologic data, the characteristics of modern sedimentary environments and dynamic depositional systems in the southern Yellow Sea (SYS) are expounded, and the controversial formation mechanism of muddy sediments is also discussed. The southern Yellow Sea shelf can be divided into low-energy sedimentary environment and high-energy sedimentary environment; the low-energy sedimentary environment can be further divided into cyclonic and anticyclonic ones, and the high-energy environment is subdivided into high-energy depositional and eroded environments. In the shelf low-energy environments, there developed muddy depositional system. In the central part of the southern Yellow Sea, there deposited the cold eddy sediments under the actions of a meso-scale cyclonic eddy (cold eddy), and in the southeast of the southern Yellow Sea, an anticyclonic eddy muddy depositional system (warm eddy sediment) was formed. These two types of sediments showed evident differences in grain size, sedimentation rate, sediment thickness and mineralogical characteristics. The high-energy environments were covered with sandy sediments on seabed; they appeared mainly in the west, south and northeast of the southern Yellow Sea. In the high-energy eroded environment, large amounts of sandstone gravels were distributed on seabed. In the high-energy depositional environment, the originally deposited fine materials (including clay and fine silt) were gradually re-suspended and then transported to a low-energy area to deposit again. In this paper, the sedimentation model of cyclonic and anticyclonic types of muddy sediments is established, and a systematic interpretation for the formation cause of muddy depositional systems in the southern Yellow Sea is given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clay mineral assemblages, crystallinity, chemistry, and micromorphology of clay particles in sediments from ODP Site 1146 in the northern South China Sea (SCS) were analyzed, and used to trace sediment sources and obtain proxy records of the past changes in the East Asian monsoon climate since the Miocene, based on a multi-approach, including X-ray diffraction (XRD) and scanning electron microscopy combined with energy dispersive X-ray spectrometry (SEM-EDS). Clay minerals consist mainly of illite and smectite, with associated chlorite and kaolinite. The illite at ODP Site 1146 has very well-to-well crystallinity, and smectite has moderate-to-poor crystallinity. In SEM the smectite particles at ODP Site 1146 often appear cauliflower-like, a typical micromorphology of volcanic smecites. The smectite at ODP Site 1146 is relatively rich in Si element, but poor in Fe, very similar to the smectite from the West Philippine Sea. In contrast, the chemical composition of illite at ODP Site 1146 has no obvious differences from those of the Loess plateau, Yellow River, Yangtze River, and Pearl River. A further study on sediment source indicates that smectite originates mainly from Luzon, kaolinite from the Pearl River, and illite and chlorite from the Pearl River, Taiwan and/or the Yangtze River. The clay mineral assemblages at ODP Site 1146 were not only controlled by continental eathering regimes surrounding the SCS, but also by the changing strength of the transport processes. The ratios of (illite+chlorite)/smectite at ODP Site 1146 were adopted as proxies for the East Asian monsoon evolution. Relatively higher ratios reflect strongly intensified winter monsoon relative to summer monsoon, in contrast, lower ratios indicate a strengthened summer monsoon relative to winter monsoon. The consistent variation of this clay proxy from those of Loess plateau, eolian deposition in the North Pacific, planktonic, benthic foraminifera, and black carbon in the SCS since 20 Ma shows that three profound shifts of the East Asian winter monsoon intensity, and aridity in the Asian inland and the intensity of winter monsoon relative to summer monsoon, occurred at about 15 Ma, 8 Ma, and the younger at about 3 Ma. The phased uplift of the Himalaya-Tibetan plateau may have played a significant role in strengthening the Asian monsoon at 15 Ma, 8 Ma, and 3 Ma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bottom sediment types in the Bohai Sea, Yellow Sea and East China Sea (BYECS) are diversified, and their distribution pattern is very complicated. However, the bottom sediment types can be simplified to be sandy sediment, clayey sediment and mixed sediment, which comprise the complicated distribution pattern of bottom sediment in the BYECS. The continental shelves of the BYECS are broad, with shallow water depths and tidal currents which are permanent and dominate the marine dynamics in the BYECS. Based on numerical simulation of tidal elevations and currents in the BYECS, the rates of suspended load transport and bed load transport during a single tidal cycle for sediments of eight different grain size ranges are calculated. The results show that any sediment, whose threshold velocity is less than that of tidal current, has the same transport trend. Suspended load transport rare, bed load transport rate, and the ratio of the former to the latter decrease with grain size becoming coarser and coarser. The erosion/accretion patterns of sediments with different grain sizes are determined by the sediment transport rate divergences, and the results show that the patterns are the same for sediments with different grain sizes. Three main bottom sediment types, i.e. sandy sediment mainly composed of fine sand, clayey sediment mainly composed of silty clay, and mixed sediment mainly composed of fine sand, silt, and clay, are obtained by computation. The three bottom sediment types and their distribution pattern are consistent not only with sediment transport field and the sea bed erosion/accretion pattern obtained by simulation, but also with field data of bottom sediment types and divisions. In the BYECS, sand ridges form mainly in the areas with strong rectilinear tidal currents, sand sheets form mainly in the areas dominated by strong rotatory tidal currents, and clayey sediments, i.e. mud patches, form mainly in the areas with weak tidal currents. Hence, not only the sandy sediments but also the clayey sediments in the BYECS are formed under the control of the whole tidal current field of the BYECS. The three main bottom sediment types are not isolated respectively-in fact, they constitute a whole tidal depositional system. Under the condition with no cyclonic cold eddy, the clayey sediments in the BYECS can form in weak tidal current environments. Therefore, a cold eddy is not necessary for the deposition of clayey sediments in the BYECS. (C) 2000 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the spatial distribution and source of the PCBs in surface sediments of the Southern Yellow Sea (SYS) and influencing factors, such as the sediment characteristics (components, relative proportions and total organic carbon contents), and hydrodynamic conditions were analyzed. PCB concentrations in the surface sediments ranged from 518-5848 pg/g, with average values of 1715 pg/g decreasing sharply compared to last year. In the study area, the PCB pollution level in the middle area was the highest, followed by that of the east coast and the west coast, respectively. Although the PCB level in the coastal areas was lower than that in the middle areas, it was proven in our study that the Yellow Sea obtained PCBs by virtue of river inputs. There was a positive and pertinent correlation between the clay proportion and PCB concentrations, and the increase of the PCB concentrations was directly proportional to the increase of TOC contents, with r = 0.61, but it was contrary to the sediment grain size. Consequently, the factors controlling PCB distribution had direct or indirect relationships with sediment grain size; moreover, the hydrodynamic conditions determined the sediment components and grain size. In conclusion, hydrodynamic conditions of the Yellow Sea were the most important influencing factors effecting the distribution of PCBs in the surface sediments of the SYS. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ochre samples excavated from the neolithic site at Qatalhoyuk, Turkey have been compared with "native" ochres from Clearwell Caves, UK using infrared spectroscopy backed up by Raman spectroscopy, scanning electron microscopy (with energy-dispersive X-rays (EDX) analysis), powder X-ray diffraction, diffuse reflection UV-Vis and atomic absorption spectroscopies. For the Clearwell Caves ochres, which range in colour from yellow-orange to red-brown, it is shown that the colour is related to the nature of the chromophore present and not to any differences in particle size. The darker red ochres contain predominantly haematite while the yellow ochre contains only goethite. The ochres from Qatalhoyuk contain only about one-twentieth of the levels of iron found in the Clearwell Caves ochres. The iron oxide pigment (haematite in all cases studied here) has been mixed with a soft lime plaster which also contains calcite and silicate (clay) minerals. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ochre samples excavated from the neolithic site at Qatalhoyuk, Turkey have been compared with "native" ochres from Clearwell Caves, UK using infrared spectroscopy backed up by Raman spectroscopy, scanning electron microscopy (with energy-dispersive X-rays (EDX) analysis), powder X-ray diffraction, diffuse reflection UV-Vis and atomic absorption spectroscopies. For the Clearwell Caves ochres, which range in colour from yellow-orange to red-brown, it is shown that the colour is related to the nature of the chromophore present and not to any differences in particle size. The darker red ochres contain predominantly haematite while the yellow ochre contains only goethite. The ochres from Qatalhoyuk contain only about one-twentieth of the levels of iron found in the Clearwell Caves ochres. The iron oxide pigment (haematite in all cases studied here) has been mixed with a soft lime plaster which also contains calcite and silicate (clay) minerals. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A trial was conducted during 1994-95 to study the effect of potassium fertilization on a guava (Psidium guajava L.) culture for 3 years. The control plots (without K) showed fruit production and potassium exportation that did not agree with the levels obtained by chemical analysis of the soil. Physical, chemical, mineralogic and morphologic analyses were performed on the red yellow latosol to identify minerals able to supply potassium, with emphasis on the fact that guava trees have a considerably widespread root system. The results obtained confirmed the presence of minerals in this soil that can supply potassium to the trees through weathering. Feldspars were identified in the silt fraction and micas in the clay fraction by X-ray diffractometry. The determination of total potassium revealed that the silt fraction of the soil had the largest absolute amounts of potassium, followed by clay. However, in view of its greater content, clay was the fraction that contributed most to the total amounts of potassium detected.