997 resultados para ultrafine particles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine the collection efficiency of ultrafine particles into an impinger fitted with a fritted nozzle tip as a means to increase contact surface area between the aerosol and the liquid. The influence of liquid sampling volume, frit porosity and the nature of the sampling liquid was explored and it was shown that all impact on the collection efficiency of particles smaller than 220 nm. Obtained values for overall collection efficiency were substantially higher (~30–95%) than have been previously reported, mainly due to the high deposition of particles in the fritted nozzle tip, especially in case of finer porosity frits and smaller particles. Values for the capture efficiency of the solvent alone ranged from 20 to 45%, depending on the type and the volume of solvent. Additionally, our results show that airstream dispersion into bubbles improves particle trapping by the liquid and that there is a difference in collection efficiencies based on the nature and volume of the solvent used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to investigate ultrafine particles (< 0.1 μm) in primary school classrooms, in relation to the classrooms activities. The investigations were conducted in three classrooms during two measuring campaigns, which together encompassed a period of 60 days. Initial investigations showed that under the normal operating conditions of the school there were many occasions in all three classrooms where indoor particle concentrations increased significantly compared to outdoor levels. By far the highest increases in the classroom resulted from art activities (painting, gluing and drawing), at times reaching over 1.4 x 105 particle cm-3. The indoor particle concentrations exceeded outdoor concentrations by approximately one order of magnitude, with a count median diameter ranging from 20-50 nm. Significant increases also occurred during cleaning activities, when detergents were used. GC-MS analysis conducted on 4 samples randomly selected from about 30 different paints and glues, as well as the detergent used in the school, showed that d-limonene was one of the main organic compounds of the detergent, however, it was not detected in the samples of the paints and the glue. Controlled experiments showed that this monoterpene, emitted from the detergent, reacted with O3 (at outdoor ambient concentrations ranging from 0.06-0.08ppm) and formed secondary organic aerosols. Further investigations to identify other liquids which may be potential sources of the precursors of secondary organic aerosols, were outside the scope of this project, however, it is expected that the problem identified by this study could be more widely spread, since most primary schools use liquid materials for art classes, and all schools use detergents for cleaning. Further studies are therefore recommended to better understand this phenomenon and also to minimize school children exposure to ultrafine particles from these indoor sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentrations of ultrafine (<0.1µm) particles (UFPs) and PM2.5 (<2.5µm) were measured whilst commuting along a similar route by train, bus, ferry and automobile in Sydney, Australia. One trip on each transport mode was undertaken during both morning and evening peak hours throughout a working week, for a total of 40 trips. Analyses comprised one-way ANOVA to compare overall (i.e. all trips combined) geometric mean concentrations of both particle fractions measured across transport modes, and assessment of both the correlation between wind speed and individual trip means of UFPs and PM2.5, and the correlation between the two particle fractions. Overall geometric mean concentrations of UFPs and PM2.5 ranged from 2.8 (train) to 8.4 (bus) × 104 particles cm-3 and 22.6 (automobile) to 29.6 (bus) µg m-3, respectively, and a statistically significant difference (p <0.001) between modes was found for both particle fractions. Individual trip geometric mean concentrations were between 9.7 × 103 (train) and 2.2 × 105 (bus) particles cm-3 and 9.5 (train) to 78.7 (train) µg m-3. Estimated commuter exposures were variable, and the highest return trip mean PM2.5 exposure occurred in the ferry mode, whilst the highest UFP exposure occurred during bus trips. The correlation between fractions was generally poor, and in keeping with the duality of particle mass and number emissions in vehicle-dominated urban areas. Wind speed was negatively correlated with, and a generally poor determinant of, UFP and PM2.5 concentrations, suggesting a more significant role for other factors in determining commuter exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, the effect of ions and ultrafine particles on ambient air quality and human health has been well documented, however, knowledge about their sources, concentrations and interactions within different types of urban environments remains limited. This thesis presents the results of numerous field studies aimed at quantifying variations in ion concentration with distance from the source, as well as identifying the dynamics of the particle ionisation processes which lead to the formation of charged particles in the air. In order to select the most appropriate measurement instruments and locations for the studies, a literature review was also conducted on studies that reported ion and ultrafine particle emissions from different sources in a typical urban environment. The initial study involved laboratory experiments on the attachment of ions to aerosols, so as to gain a better understanding of the interaction between ions and particles. This study determined the efficiency of corona ions at charging and removing particles from the air, as a function of different particle number and ion concentrations. The results showed that particle number loss was directly proportional to particle charge concentration, and that higher small ion concentrations led to higher particle deposition rates in all size ranges investigated. Nanoparticles were also observed to decrease with increasing particle charge concentration, due to their higher Brownian mobility and subsequent attachment to charged particles. Given that corona discharge from high voltage powerlines is considered one of the major ion sources in urban areas, a detailed study was then conducted under three parallel overhead powerlines, with a steady wind blowing in a perpendicular direction to the lines. The results showed that large sections of the lines did not produce any corona at all, while strong positive emissions were observed from discrete components such as a particular set of spacers on one of the lines. Measurements were also conducted at eight upwind and downwind points perpendicular to the powerlines, spanning a total distance of about 160m. The maximum positive small and large ion concentrations, and DC electric field were observed at a point 20 m downwind from the lines, with median values of 4.4×103 cm-3, 1.3×103 cm-3 and 530 V m-1, respectively. It was estimated that, at this point, less than 7% of the total number of particles was charged. The electrical parameters decreased steadily with increasing downwind distance from the lines but remained significantly higher than background levels at the limit of the measurements. Moreover, vehicles are one of the most prevalent ion and particle emitting sources in urban environments, and therefore, experiments were also conducted behind a motor vehicle exhaust pipe and near busy motorways, with the aim of quantifying small ion and particle charge concentration, as well as their distribution as a function of distance from the source. The study found that approximately equal numbers of positive and negative ions were observed in the vehicle exhaust plume, as well as near motorways, of which heavy duty vehicles were believed to be the main contributor. In addition, cluster ion concentration was observed to decrease rapidly within the first 10-15 m from the road and ion-ion recombination and ion-aerosol attachment were the most likely cause of ion depletion, rather than dilution and turbulence related processes. In addition to the above-mentioned dominant ion sources, other sources also exist within urban environments where intensive human activities take place. In this part of the study, airborne concentrations of small ions, particles and net particle charge were measured at 32 different outdoor sites in and around Brisbane, Australia, which were classified into seven different groups as follows: park, woodland, city centre, residential, freeway, powerlines and power substation. Whilst the study confirmed that powerlines, power substations and freeways were the main ion sources in an urban environment, it also suggested that not all powerlines emitted ions, only those with discrete corona discharge points. In addition to the main ion sources, higher ion concentrations were also observed environments affected by vehicle traffic and human activities, such as the city centre and residential areas. A considerable number of ions were also observed in a woodland area and it is still unclear if they were emitted directly from the trees, or if they originated from some other local source. Overall, it was found that different types of environments had different types of ion sources, which could be classified as unipolar or bipolar particle sources, as well as ion sources that co-exist with particle sources. In general, fewer small ions were observed at sites with co-existing sources, however particle charge was often higher due to the effect of ion-particle attachment. In summary, this study quantified ion concentrations in typical urban environments, identified major charge sources in urban areas, and determined the spatial dispersion of ions as a function of distance from the source, as well as their controlling factors. The study also presented ion-aerosol attachment efficiencies under high ion concentration conditions, both in the laboratory and in real outdoor environments. The outcomes of these studies addressed the aims of this work and advanced understanding of the charge status of aerosols in the urban environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrafine particles (UFPs, <100 nm) are produced in large quantities by vehicular combustion and are implicated in causing several adverse human health effects. Recent work has suggested that a large proportion of daily UFP exposure may occur during commuting. However, the determinants, variability and transport mode-dependence of such exposure are not well-understood. The aim of this review was to address these knowledge gaps by distilling the results of ‘in-transit’ UFP exposure studies performed to-date, including studies of health effects. We identified 47 exposure studies performed across 6 transport modes: automobile, bicycle, bus, ferry, rail and walking. These encompassed approximately 3000 individual trips where UFP concentrations were measured. After weighting mean UFP concentrations by the number of trips in which they were collected, we found overall mean UFP concentrations of 3.4, 4.2, 4.5, 4.7, 4.9 and 5.7 × 10^4 particles cm^-3 for the bicycle, bus, automobile, rail, walking and ferry modes, respectively. The mean concentration inside automobiles travelling through tunnels was 3.0 × 10^5 particles cm^-3. While the mean concentrations were indicative of general trends, we found that the determinants of exposure (meteorology, traffic parameters, route, fuel type, exhaust treatment technologies, cabin ventilation, filtration, deposition, UFP penetration) exhibited marked variability and mode-dependence, such that it is not necessarily appropriate to rank modes in order of exposure without detailed consideration of these factors. Ten in-transit health effects studies have been conducted and their results indicate that UFP exposure during commuting can elicit acute effects in both healthy and health-compromised individuals. We suggest that future work should focus on further defining the contribution of in-transit UFP exposure to total UFP exposure, exploring its specific health effects and investigating exposures in the developing world. Keywords: air pollution; transport modes; acute health effects; travel; public transport

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commuting in various transport modes represents an activity likely to incur significant exposure to traffic emissions. This study investigated the determinants and characteristics of exposure to ultrafine (< 100 nm) particles (UFPs) in four transport modes in Sydney, with a specific focus on exposure in automobiles, which remain the transport mode of choice for approximately 70% of Sydney commuters. UFP concentrations were measured using a portable condensation particle counter (CPC) inside five automobiles commuting on above ground and tunnel roadways, and in buses, ferries and trains. Determinant factors investigated included wind speed, cabin ventilation (automobiles only) and traffic volume. The results showed that concentrations varied significantly as a consequence of transport mode, vehicle type and ventilation characteristics. The effects of wind speed were minimal relative to those of traffic volume (especially heavy diesel vehicles) and cabin ventilation, with the latter proving to be a strong determinant of UFP ingress into automobiles. The effect of ~70 minutes of commuting on total daily exposure was estimated using a range of UFP concentrations reported for several microenvironments. A hypothetical Sydney resident commuting by automobile and spending 8.5 minutes of their day in the M5 East tunnel could incur anywhere from a lower limit of 3-11% to an upper limit of 37-69% of daily UFP exposure during a return commute, depending on the concentrations they encountered in other microenvironments, the type of vehicle they used and the ventilation setting selected. However, commute-time exposures at either extreme of the values presented are unlikely to occur in practice. The range of exposures estimated for other transport modes were comparable to those of automobiles, and in the case of buses, higher than automobiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-activity patterns and the airborne pollutant concentrations encountered by children each day are an important determinant of individual exposure to airborne particles. This is demonstrated in this work by using hand-held devices to measure the real-time individual exposure of more than 100 children aged 8-11 years to particle number concentrations and average particle diameter, as well as alveolar and tracheobronchial deposited surface area concentration. A GPS-logger and activity diaries were also used to give explanation to the measurement results. Children were divided in three sample groups: two groups comprised of urban schools (school time from 8:30 am to 1:30 pm) with lunch and dinner at home, and the third group of a rural school with only dinner at home. The mean individual exposure to particle number concentration was found to differ between the three groups, ranging from 6.2×104 part. cm-3 for children attending one urban school to 1.6×104 part. cm-3 for the rural school. The corresponding daily alveolar deposited surface area dose varied from about 1.7×103 mm2 for urban schools to 6.0×102 mm2 for the rural school. For all of the children monitored, the lowest particle number concentrations are found during sleeping time and the highest were found during eating time. With regard to alveolar deposited surface area dose, a child's home was the major contributor (about 70%), with school contributing about 17% for urban schools and 27% for the rural school. An important contribution arises from the cooking/eating time spent at home, which accounted for approximately 20% of overall exposure, corresponding to more than 200 mm2. These activities represent the highest dose received per time unit, with very high values also encountered by children with a fireplace at home, as well as those that spend considerable time stuck in traffic jams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work was motivated by the limited knowledge on personal exposure to ultrafine (UF) particles, and it quantifies school children’s personal exposure to UF particles, in terms of number, using Philips Aerasense Nano Tracers (NTs). This study is being conducted in conjunction with the “Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH)” project, which aims to determine the relationship between exposure to traffic related UF particles and children’s health (http://www.ilaqh.qut.edu.au/Misc/UPTECH%20 Home.htm). To achieve this, air quality and some health data are being collected at 25 schools within the Brisbane Metropolitan Area in Australia over two years. The school children’s personal exposure to UF particles in the first 17 schools are presented here. These schools were tested between Oct 2010 and Dec 2011. Data collection is expected to be complete by mid 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work was motivated by the limited knowledge on personal exposure to ultrafine (UF) particles, especially for children (Mejía et al. 2011). Most research efforts in the past have investigated particle mass concentration and only a limited number of studies have been conducted to quantify other particle metrics, such as particle number, in the classrooms and school microenvironment in general (Diapouli et al. 2008; Guo et al. 2008; Weichenthal et al. 2008; Mullen et al. 2011).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particulate matter is common in our environment and has been linked to human health problems particularly in the ultrafine size range. A range of chemical species have been associated with particulate matter and of special concern are the hazardous chemicals that can accentuate health problems. If the sources of such particles can be identified then strategies can be developed for the reduction of air pollution and consequently, the improvement of the quality of life. In this investigation, particle number size distribution data and the concentrations of chemical species were obtained at two sites in Brisbane, Australia. Source apportionment was used to determine the sources (or factors) responsible for the particle size distribution data. The apportionment was performed by Positive Matrix Factorisation (PMF) and Principal Component Analysis/Absolute Principal Component Scores (PCA/APCS), and the results were compared with information from the gaseous chemical composition analysis. Although PCA/APCS resolved more sources, the results of the PMF analysis appear to be more reliable. Six common sources identified by both methods include: traffic 1, traffic 2, local traffic, biomass burning, and two unassigned factors. Thus motor vehicle related activities had the most impact on the data with the average contribution from nearly all sources to the measured concentrations higher during peak traffic hours and weekdays. Further analyses incorporated the meteorological measurements into the PMF results to determine the direction of the sources relative to the measurement sites, and this indicated that traffic on the nearby road and intersection was responsible for most of the factors. The described methodology which utilised a combination of three types of data related to particulate matter to determine the sources could assist future development of particle emission control and reduction strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An accurate evaluation of the airborne particle dose-response relationship requires detailed measurements of the actual particle concentration levels that people are exposed to, in every microenvironment in which they reside. The aim of this work was to perform an exposure assessment of children in relation to two different aerosol species: ultrafine particles (UFPs) and black carbon (BC). To this purpose, personal exposure measurements, in terms of UFP and BC concentrations, were performed on 103 children aged 8-11 years (10.1 ± 1.1 years) using hand-held particle counters and aethalometers. Simultaneously, a time-activity diary and a portable GPS were used to determine the children’s daily time-activity pattern and estimate their inhaled dose of UFPs and BC. The median concentration to which the study population was exposed was found to be comparable to the high levels typically detected in urban traffic microenvironments, in terms of both particle number (2.2×104 part. cm-3) and BC (3.8 μg m-3) concentrations. Daily inhaled doses were also found to be relatively high and were equal to 3.35×1011 part. day-1 and 3.92×101 μg day-1 for UFPs and BC, respectively. Cooking and using transportation were recognized as the main activities contributing to overall daily exposure, when normalized according to their corresponding time contribution for UFPs and BC, respectively. Therefore, UFPs and BC could represent tracers of children exposure to particulate pollution from indoor cooking activities and transportation microenvironments, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies have demonstrated that exposure to particulate air pollution is associated with several adverse health effects. Recently, interest has focused on ultrafine particles (UFPs, diameter ≤ 100 nm), due to the adverse health effects caused by their ability to induce inflammation and deposit in secondary organs [1]. These effects are much more pronounced in children because they inhale a higher dose of UFPs relative to both lung size (when compared with adults) [2] and increased breathing rates, since they are generally more physically active than adults ...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to quantify school children’s exposure to ultrafine particles (UFP) in urban environments. The study was conducted as part of a larger epidemiological project aiming to determine the association between exposures to UFPs and children’s health, titled “Ultrafine Particles from Traffic Emissions and Children’s Health”1 (UPTECH). School children aged 8-11 years old at 24 state schools within the Brisbane Metropolitan Area participated in the present study. This paper presents the methodology and results for calculating deposited UFP surface area in the alveolar region (dose), where UFP deposition is more efficient for particles larger than 6 nm...