949 resultados para type three secretion system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atypical enteropathogenic Escherichia coli (aEPEC) strains are diarrheal pathogens that lack bundle-forming pilus production but possess the virulence-associated locus of enterocyte effacement. aEPEC strain 1551-2 produces localized adherence (LA) on HeLa cells; however, its isogenic intimin (eae) mutant produces a diffuse-adherence (DA) pattern. In this study, we aimed to identify the DA-associated adhesin of the 1551-2 eae mutant. Electron microscopy of 1551-2 identified rigid rod-like pili composed of an 18-kDa protein, which was identified as the major pilin subunit of type 1 pilus (T1P) by mass spectrometry analysis. Deletion of fimA in 1551-2 affected biofilm formation but had no effect on adherence properties. Analysis of secreted proteins in supernatants of this strain identified a 150-kDa protein corresponding to SslE, a type 2 secreted protein that was recently reported to be involved in biofilm formation of rabbit and human EPEC strains. However, neither adherence nor biofilm formation was affected in a 1551-2 sslE mutant. We then investigated the role of the EspA filament associated with the type 3 secretion system (T3SS) in DA by generating a double eae espA mutant. This strain was no longer adherent, strongly suggesting that the T3SS translocon is the DA adhesin. In agreement with these results, specific anti-EspA antibodies blocked adherence of the 1551-2 eae mutant. Our data support a role for intimin in LA, for the T3SS translocon in DA, and for T1P in biofilm formation, all of which may act in concert to facilitate host intestinal colonization by aEPEC strains. ©2013, American Society for Microbiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The VirB/D4 type IV secretion system (T4SS) of Agrobacterium tumefaciens functions to transfer substrates to infected plant cells through assembly of a translocation channel and a surface structure termed a T-pilus. This thesis is focused on identifying contributions of VirB10 to substrate transfer and T-pilus formation through a mutational analysis. VirB10 is a bitopic protein with several domains, including a: (i) cytoplasmic N-terminus, (ii) single transmembrane (TM) α-helix, (iii) proline-rich region (PRR), and (iv) large C-terminal modified β-barrel. I introduced cysteine insertion and substitution mutations throughout the length of VirB10 in order to: (i) test a predicted transmembrane topology, (ii) identify residues/domains contributing to VirB10 stability, oligomerization, and function, and (iii) monitor structural changes accompanying energy activation or substrate translocation. These studies were aided by recent structural resolution of a periplasmic domain of a VirB10 homolog and a ‘core’ complex composed of homologs of VirB10 and two outer membrane associated subunits, VirB7 and VirB9. By use of the substituted cysteine accessibility method (SCAM), I confirmed the bitopic topology of VirB10. Through phenotypic studies of Ala-Cys insertion mutations, I identified “uncoupling” mutations in the TM and β-barrel domains that blocked T-pilus assembly but permitted substrate transfer. I showed that cysteine replacements in the C-terminal periplasmic domain yielded a variety of phenotypes in relation to protein accumulation, oligomerization, substrate transfer, and T-pilus formation. By SCAM, I also gained further evidence that VirB10 adopts different structural states during machine biogenesis. Finally, I showed that VirB10 supports substrate transfer even when its TM domain is extensively mutagenized or substituted with heterologous TM domains. By contrast, specific residues most probably involved in oligomerization of the TM domain are required for biogenesis of the T-pilus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Salmonella effector protein SopA is translocated into host cells via the SPI-1 type III secretion system (TTSS) and contributes to enteric disease. We found that the chaperone InvB binds to SopA and slightly stabilizes it in the bacterial cytosol and that it is required for its transport via the SPI-1 TTSS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biogenesis of the flagellum, a motive organelle of many bacterial species, is best understood for members of the Enterobacteriaceae. The flagellum is a heterooligomeric structure that protrudes from the surface of the cell. Its assembly initially involves the synthesis of a dedicated protein export apparatus that subsequently transports other flagellar proteins by a type III mechanism from the cytoplasm to the outer surface of the cell, where oligomerization occurs. In this study, the flagellum export apparatus was shown to function also as a secretion system for the transport of several extracellular proteins in the pathogenic bacterium Yersinia enterocolitica. One of the proteins exported by the flagellar secretion system was the virulence-associated phospholipase, YplA. These results suggest type III protein secretion by the flagellar system may be a general mechanism for the transport of proteins that influence bacterial–host interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a three-level V-type atomic system with the ground state coupled by a laser field to only one of the excited states, and with the two excited states coupled together by a dc field. Although the dipole moments of the two dipole-allowed transitions are assumed perpendicular, we demonstrate that this system emulates to a large degree a three-level system with parallel dipole moments-the latter being a system that exhibits quantum interference and displays a number of interesting features. As examples, we show that the system can produce extremely large values for the intensity-intensity correlation function, and that its resonance fluorescence spectrum can display ultranarrow lines. The dressed states for this system are identified, and the spectral features are interpreted in terms of transitions among these dressed states. We also show that this system is capable of exhibiting considerable squeezing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several pathogenic strains of Escherichia coli exploit type III secretion to inject effector proteins into human cells, which then subvert eukaryotic cell biology to the bacterium's advantage. We have exploited bioinformatics and experimental approaches to establish that the effector repertoire in the Sakai strain of enterohemorrhagic E. coli (EHEC) O157:H7 is much larger than previously thought. Homology searches led to the identification of > 60 putative effector genes. Thirteen of these were judged to be likely pseudogenes, whereas 49 were judged to be potentially functional. In total, 39 proteins were confirmed experimentally as effectors: 31 through proteomics and 28 through translocation assays. At the protein level, the EHEC effector sequences fall into > 20 families. The largest family, the NleG family, contains 14 members in the Sakai strain alone. EHEC also harbors functional homologs of effectors from plant pathogens (HopPtoH, HopW, AvrA) and from Shigella (OspD, OspE, OspG), and two additional members of the Map/IpgB family. Genes encoding proven or predicted effectors occur in > 20 exchangeable effector loci scattered throughout the chromosome. Crucially, the majority of functional effector genes are encoded by nine exchangeable effector loci that lie within lambdoid prophages. Thus, type III secretion in E. coli is linked to a vast phage metagenome, acting as a crucible for the evolution of pathogenicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The medically significant genus Chlamydia is a class of obligate intracellular bacterial pathogens that replicate within vacuoles in host eukaryotic cells termed inclusions. Chlamydia's developmental cycle involves two forms; an infectious extracellular form, known as an elementary body (EB), and a non-infectious form, known as the reticulate body (RB), that replicates inside the vacuoles of the host cells. The RB surface is covered in projections that are in intimate contact with the inclusion membrane. Late in the developmental cycle, these reticulate bodies differentiate into the elementary body form. In this paper, we present a hypothesis for the modulation of these developmental events involving the contact-dependent type III secretion (TTS) system. TTS surface projections mediate intimate contact between the RB and the inclusion membrane. Below a certain number of projections, detachment of the RB provides a signal for late differentiation of RB into EB. We use data and develop a mathematical model investigating this hypothesis. If the hypothesis proves to be accurate, then we have shown that increasing the number of inclusions per host cell will increase the number of infectious progeny EB until some optimal number of inclusions. For more inclusions than this optimum, the infectious yield is reduced because of spatial restrictions. We also predict that a reduction in the number of projections on the surface of the RB (and as early as possible during development) will significantly reduce the burst size of infectious EB particles. Many of the results predicted by the model can be tested experimentally and may lead to the identification of potential targets for drug design. © Society for Mathematical Biology 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7 colonizes human and animal gut via formation of attaching and effacing lesions. EHEC strains use a type III secretion system to translocate a battery of effector proteins into the mammalian host cell, which subvert diverse signal transduction pathways implicated in actin dynamics, phagocytosis, and innate immunity. The genomes of sequenced EHEC O157:H7 strains contain two copies of the effector protein gene nleH, which share 49% sequence similarity with the gene for the Shigella effector OspG, recently implicated in inhibition of migration of the transcriptional regulator NF-kappaB to the nucleus. In this study we investigated the role of NleH during EHEC O157:H7 infection of calves and lambs. We found that while EHEC DeltanleH colonized the bovine gut more efficiently than the wild-type strain, in lambs the wild-type strain exhibited a competitive advantage over the mutant during mixed infection. Using the mouse pathogen Citrobacter rodentium, which shares many virulence factors with EHEC O157:H7, including NleH, we observed that the wild-type strain exhibited a competitive advantage over the mutant during mixed infection. We found no measurable differences in T-cell infiltration or hyperplasia in colons of mice inoculated with the wild-type or the nleH mutant strain. Using NF-kappaB reporter mice carrying a transgene containing a luciferase reporter driven by three NF-kappaB response elements, we found that NleH causes an increase in NF-kappaB activity in the colonic mucosa. Consistent with this, we found that the nleH mutant triggered a significantly lower tumor necrosis factor alpha response than the wild-type strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we analyze the three-component reaction-diffusion system originally developed by Schenk et al. (PRL 78:3781–3784, 1997). The system consists of bistable activator-inhibitor equations with an additional inhibitor that diffuses more rapidly than the standard inhibitor (or recovery variable). It has been used by several authors as a prototype three-component system that generates rich pulse dynamics and interactions, and this richness is the main motivation for the analysis we present. We demonstrate the existence of stationary one-pulse and two-pulse solutions, and travelling one-pulse solutions, on the real line, and we determine the parameter regimes in which they exist. Also, for one-pulse solutions, we analyze various bifurcations, including the saddle-node bifurcation in which they are created, as well as the bifurcation from a stationary to a travelling pulse, which we show can be either subcritical or supercritical. For two-pulse solutions, we show that the third component is essential, since the reduced bistable two-component system does not support them. We also analyze the saddle-node bifurcation in which two-pulse solutions are created. The analytical method used to construct all of these pulse solutions is geometric singular perturbation theory, which allows us to show that these solutions lie in the transverse intersections of invariant manifolds in the phase space of the associated six-dimensional travelling wave system. Finally, as we illustrate with numerical simulations, these solutions form the backbone of the rich pulse dynamics this system exhibits, including pulse replication, pulse annihilation, breathing pulses, and pulse scattering, among others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we analyze the stability and the associated bifurcations of several types of pulse solutions in a singularly perturbed three-component reaction-diffusion equation that has its origin as a model for gas discharge dynamics. Due to the richness and complexity of the dynamics generated by this model, it has in recent years become a paradigm model for the study of pulse interactions. A mathematical analysis of pulse interactions is based on detailed information on the existence and stability of isolated pulse solutions. The existence of these isolated pulse solutions is established in previous work. Here, the pulse solutions are studied by an Evans function associated to the linearized stability problem. Evans functions for stability problems in singularly perturbed reaction-diffusion models can be decomposed into a fast and a slow component, and their zeroes can be determined explicitly by the NLEP method. In the context of the present model, we have extended the NLEP method so that it can be applied to multi-pulse and multi-front solutions of singularly perturbed reaction-diffusion equations with more than one slow component. The brunt of this article is devoted to the analysis of the stability characteristics and the bifurcations of the pulse solutions. Our methods enable us to obtain explicit, analytical information on the various types of bifurcations, such as saddle-node bifurcations, Hopf bifurcations in which breathing pulse solutions are created, and bifurcations into travelling pulse solutions, which can be both subcritical and supercritical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We observe coherent population trapping (CPT) in a two-electron atom-Yb-174-using the S-1(0), F= 0 -> P-3(1), F `= 1 transition. CPT is not possible for such a transition according to one-electron theory because the magnetic sublevels form a V-type system, but in a two-electron atom like Yb, the interaction of the electrons transforms the level structure into a V-type system, which allows the formation of a dark state and hence the observation of CPT. Since the two levels involved are degenerate, we use a magnetic field to lift the degeneracy. The single fluorescence dip then splits into five dips-the central unshifted one corresponds to coherent population oscillation, while the outer four are due to CPT. The linewidth of the CPT resonance is about 300 kHz and is limited by the natural linewidth of the excited state, which is to be expected because the excited state is involved in the formation of the dark state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control role of the relative phase between the probe and driving fields on the gain and dispersion in an open Lambda-type inversionless lasing system with spontaneously generated coherence (SGC) is investigated. It is shown that the inversionless gain and dispersion are quite sensitive to variation in the relative phase; by adjusting the value of the relative phase, electromagnetically induced transparency (EIT), a high refractive index with zero absorption and a larger inversionless gain can be realized. It is also shown that, in the contributions to the inversionless gain ( absorption) and dispersion, the contribution from SGC is always much larger than that from the dynamically induced coherence for any value of the relative phase. Our analysis shows that variation in the SGC effect will cause the spectrum regions and values of the inversionless gain and dispersion to vary evidently. We also found that, under the same conditions, the values of the inversionless gain and dispersion in the open system are evidently larger than those in the corresponding closed system; EIT occurs in the open system but cannot occur in the closed system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ExoU, uma citotoxina produzida pelo patógeno oportunista Pseudomonas aeruginosa e translocada para o citossol de células hospedeiras via sistema de secreção do tipo III, é associada à gravidade de infecções agudas. Estudos anteriores realizados em nosso laboratório relataram a potente atividade pró-inflamatória de ExoU, responsável por um intenso recrutamento de neutrófilos para o sítio de infecção. No presente trabalho, o efeito de ExoU na modulação da ativação do fator transcricional NF-κB e na regulação da expressão e da secreção da quimiocina para neutrófilos IL-8 foi avaliado em culturas de células epiteliais respiratórias e endoteliais humanas infectadas com a cepa PA103 de P. aeruginosa (produtora de ExoU) ou com a mutante deletada no gene exoU, PA103κexoU. Análises por RT-PCR semi-quantitativo mostraram que a infecção pela cepa produtora de ExoU levou ao aumento dos níveis de mRNA de IL-8, enquanto ensaios de alteração da mobilidade eletroforética (EMSA), supershift e com gene repórter mostraram que ExoU induziu a translocação nuclear do heterodímero transativador p65/p50 de NF-κB e a ativação da transcrição de genes dependente deste fator transcricional. Adicionalmente, o tratamento das culturas celulares com um inibidor de NF-κB antes da infecção bacteriana reduziu significativamente os níveis de mRNA de IL-8 e da secreção desta quimiocina. Em conjunto, estes resultados mostram que ExoU ativa NF-κB e, consequentemente, estimula a expressão e a secreção de IL-8 por células epiteliais respiratórias e células endoteliais infectadas com P. aeruginosa

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Escherichia coli enteroagregativa (EAEC) é um patotipo emergente e heterogêneo que causa a diarréia aguda ou persistente em indivíduos de diferentes faixas etárias e em pacientes imunocomprometidos. Além disso, EAEC é um dos principais agentes etiológicos da diarréia dos viajantes. O padrão de aderência agregativa de EAEC está associado ao plasmídeo de aderência agregativa (pAA). Genes presentes no plasmídeo e no cromossomo codificam proteínas envolvidas na secreção extracelular de fatores de virulência na superfície ou diretamente na célula hospedeira. A capacidade de produção de muco e biofilme, elaboração de toxinas, aderência e indução de inflamação intensa na mucosa intestinal são importantes características da patogenicidade de EAEC. Nesse estudo, determinamos o perfil genotípico de genes do sistema de secreção Tipo V (SST5) e sistema de secreção Tipo VI (SST6) em cepas de EAEC. Os genes do SST5 ocorreram com mais frequência que os genes do SST6. A presença de pelo menos um gene do SST5 foi detectada em 79% das cepas, enquanto que os genes relacionados ao SST6 foram detectados em apenas 42% das cepas analisadas. A produção de biofilme foi observada em teste quantitativo e verificamos que 67% das cepas produziram biofilme. No teste qualitativo, o tipo de biofilme que predomina é o biofilme moderado (11 cepas), seguido do biofilme forte (9 cepas) e do biofilme discreto (4 cepas). A presença ou ausência de genes do SST5 e SST6 não parece interferir com a capacidade de produção de biofilme, nem com o tipo de biofilme formado. Em ensaios de citotoxicidade, apenas 25% das cepas EAEC (sobrenadante) causaram redução significativa na viabilidade de células T84 avaliada pelo teste de redução com MTT. Nossos resultados mostram que as cepas EAEC isoladas de crianças com diarréia aguda ou de grupo controle são invasoras para células T84. Ao compararmos a capacidade invasora das cepas clinicas e controle, observamos que a média do índice de internalização obtido nas 15 cepas do grupo clinico foi de 5,7% 1,7 e para as 9 cepas do grupo controle foi de 2.4 % 0,7; entretanto essa diferença observada não foi estatisticamente significativa. Não foi possível correlacionar o perfil genotípico dos genes do SST5 e SST6 com o perfil fenotípico analisado (formação de biofilme, citotoxicidade e invasão).O que pode ser atribuído a heterogeneidade genotípica e fenotípica, uma característica relevante de cepas EAEC.