914 resultados para two dimensions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the ground-water flow problem associated with the injection and recovery of certain corrosive fluids into mineral bearing rock. The aim is to dissolve the minerals in situ, and then recover them in solution. In general, it is not possible to recover all the injected fluid, which is of concern economically and environmentally. However, a new strategy is proposed here, that allows all the leaching fluid to be recovered. A mathematical model of the situation is solved approximately using an asymptotic solution, and exactly using a boundary integral approach. Solutions are shown for two-dimensional flow, which is of some practical interest as it is achievable in old mine tunnels, for example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider time-space fractional reaction diffusion equations in two dimensions. This equation is obtained from the standard reaction diffusion equation by replacing the first order time derivative with the Caputo fractional derivative, and the second order space derivatives with the fractional Laplacian. Using the matrix transfer technique proposed by Ilic, Liu, Turner and Anh [Fract. Calc. Appl. Anal., 9:333--349, 2006] and the numerical solution strategy used by Yang, Turner, Liu, and Ilic [SIAM J. Scientific Computing, 33:1159--1180, 2011], the solution of the time-space fractional reaction diffusion equations in two dimensions can be written in terms of a matrix function vector product $f(A)b$ at each time step, where $A$ is an approximate matrix representation of the standard Laplacian. We use the finite volume method over unstructured triangular meshes to generate the matrix $A$, which is therefore non-symmetric. However, the standard Lanczos method for approximating $f(A)b$ requires that $A$ is symmetric. We propose a simple and novel transformation in which the standard Lanczos method is still applicable to find $f(A)b$, despite the loss of symmetry. Numerical results are presented to verify the accuracy and efficiency of our newly proposed numerical solution strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current paper compares and investigates the discrepancies in motivational drives of project team members with respect to their project environment in collocated and distributed (virtual) project teams. The set of factors, which in this context are called ‘Sense of Ownership’, is used as a scale to measure these discrepancies using one tailed t tests. These factors are abstracted from theories of motivation, team performance, and team effectiveness and are related to ‘Nature of Work’, ‘Rewards’, and ‘Communication’. It has been observed that ‘virtual ness’ does not seem to impact the motivational drives of the project team members or the way the project environments provide or support those motivational drives in collocated and distributed projects. At a more specific level in terms of the motivational drives of the project team (‘WANT’) and the ability of the project environment to provide or support those factors (‘GET’), in collocated project teams, significant discrepancies were observed with respect to financial and non financial rewards, learning opportunities, nature of work and project specific communication, while in distributed teams, significant discrepancies with respect to project centric communication, followed by financial rewards and nature of work. Further, distributed project environments seem to better support the team member motivation than collocated project environments. The study concludes that both the collocated and distributed project environments may not be adequately supporting the motivational drives of its project team members, which may be frustrating to them. However, members working in virtual team environments may be less frustrated than their collocated counterparts as virtual project environments are better aligned with the motivational drives of their team members vis-à-vis the collocated project environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current paper compares and investigates the discrepancies in motivational drives of project team members with respect to their project environment in collocated and distributed (virtual) project teams. The set of factors, which in this context are called ‘Sense of Ownership’, is used as a scale to measure these discrepancies using one tailed t tests. These factors are abstracted from theories of motivation, team performance, and team effectiveness and are related to ‘Nature of Work’, ‘Rewards’, and ‘Communication’. It has been observed that ‘virtualness’ does not seem to impact the motivational drives of the project team members or the way the project environments provide or support those motivational drives in collocated and distributed projects. At a more specific level in terms of the motivational drives of the project team (‘WANT’) and the ability of the project environment to provide or support those factors (‘GET’), in collocated project teams, significant discrepancies were observed with respect to financial and non financial rewards, learning opportunities, nature of work and project specific communication, while in distributed teams, significant discrepancies with respect to project centric communication, followed by financial rewards and nature of work. Further, distributed project environments seem to better support the team member motivation than collocated project environments. The study concludes that both the collocated and distributed project environments may not be adequately supporting the motivational drives of its project team members, which may be frustrating to them. However, members working in virtual team environments may be less frustrated than their collocated counterparts as virtual project environments are better aligned with the motivational drives of their team members vis-à-vis the collocated project environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a surprising cooperative adsorption process observed by scanning tunneling microscopy (STM) at the liquid−solid interface. The process involves the association of a threefold hydrogen-bonding unit, trimesic acid (TMA), with straight-chain aliphatic alcohols of varying length (from C7 to C30), which coadsorb on highly oriented pyrolytic graphite (HOPG) to form linear patterns. In certain cases, the known TMA “flower pattern” can coexist temporarily with the linear TMA−alcohol patterns, but it eventually disappears. Time-lapsed STM imaging shows that the evolution of the flower pattern is a classical ripening phenomenon. The periodicity of the linear TMA−alcohol patterns can be modulated by choosing alcohols with appropriate chain lengths, and the precise structure of the patterns depends on the parity of the carbon count in the alkyl chain. Interactions that lead to this odd−even effect are analyzed in detail. The molecular components of the patterns are achiral, yet their association by hydrogen bonding leads to the formation of enantiomeric domains on the surface. The interrelation of these domains and the observation of superperiodic structures (moiré patterns) are rationalized by considering interactions with the underlying graphite surface and within the two-dimensional crystal of the adsorbed molecules. Comparison of the observed two-dimensional structures with the three-dimensional crystal structures of TMA−alcohol complexes determined by X-ray crystallography helps reveal the mechanism of molecular association in these two-component systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An anomalous multiflavor chiral theory, with the gauge group SU(N), is studied using non-Abelian bosonization. The theory can be made gauge invariant by introducing Wess-Zumino fields and it is particularly simple if the Jackiw-Rajaraman parameter equals 2. In the strong-coupling limit, the low-energy effective theory only contains light unconfined fermions which interact weakly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the possibility of a direct second-order transition out of a collinear Neel phase to a paramagnetic spin liquid in two-dimensional quantum antiferromagnets. Contrary to conventional wisdom, we show that such second-order quantum transitions can potentially occur to certain spin liquid states popular in theories of the cuprates. We provide a theory of this transition and study its universal properties in an epsilon expansion. The existence of such a transition has a number of interesting implications for spin-liquid-based approaches to the underdoped cuprates. In particular it considerably clarifies existing ideas for incorporating antiferromagnetic long range order into such a spin-liquid-based approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work offers a method for finding some exact soliton solutions to coupled relativistic scalar field theories in 1+1 dimensions. The method can yield static solutions as well as quasistatic "charged" solutions for a variety of Lagrangians. Explicit solutions are derived as examples. A particularly interesting class of solutions is nontopological without being either charged or time dependent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spiral space filling geometrical constructions using rhombuses in two dimensions are considered as plausible mechanisms for quasicrystal growth. These models will show staircase-like features which may be observed experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct a new many-body Hamiltonian with two- and three-body interactions in two space dimensions and obtain its exact many-body ground state for an arbitrary number of particles. This ground state has a novel pairwise correlation. A class of exact solutions for the excited states is also found. These excited states display an energy spectrum similar to the Calogero-Sutherland model in one dimension. The model reduces to an analog of the well-known trigonometric Sutherland model when projected on to a circular ring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxides of the general formula La2-2xSr2xCu1-xII,M(x)(IV)O(4) (M = Ti, Mn, Fe, or Ru), crystallizing in the tetragonal K,NIF, structure, have been synthesized. For M=Ti, only the x=0,5 member could be prepared, while for M=Mn and Fe, the composition range is 0 Cu(III)-O-Fe(III) valence degeneracy. Increasing the strontium content at the expense of lanthanum in La2-2xSr2xCu1-xFexO4 for x less than or equal to 0.20 renders the samples metallic but not superconducting. (C) 1997 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss a many-body Hamiltonian with two- and three-body interactions in two dimensions introduced recently by Murthy, Bhaduri and Sen. Apart from an analysis of some exact solutions in the many-body system, we analyse in detail the two-body problem which is completely solvable. We show that the solution of the two-body problem reduces to solving a known differential equation due to Heun. We show that the two-body spectrum becomes remarkably simple for large interaction strengths and the level structure resembles that of the Landau levels. We also clarify the 'ultraviolet' regularization which is needed to define an inverse-square potential properly and discuss its implications for our model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the Finkelstein action describing a system of spin-polarized or spinless electrons in 2+2epsilon dimensions, in the presence of disorder as well as the Coulomb interactions. We extend the renormalization-group analysis of our previous work and evaluate the metal-insulator transition of the electron gas to second order in an epsilon expansion. We obtain the complete scaling behavior of physical observables like the conductivity and the specific heat with varying frequency, temperature, and/or electron density. We extend the results for the interacting electron gas in 2+2epsilon dimensions to include the quantum critical behavior of the plateau transitions in the quantum Hall regime. Although these transitions have a very different microscopic origin and are controlled by a topological term in the action (theta term), the quantum critical behavior is in many ways the same in both cases. We show that the two independent critical exponents of the quantum Hall plateau transitions, previously denoted as nu and p, control not only the scaling behavior of the conductances sigma(xx) and sigma(xy) at finite temperatures T, but also the non-Fermi-liquid behavior of the specific heat (c(v)proportional toT(p)). To extract the numerical values of nu and p it is necessary to extend the experiments on transport to include the specific heat of the electron gas.