782 resultados para tibia osteotomy


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of implant osteotomy on immediate bone cell viability, comparing guided surgery for implant placement with the classic drilling procedure. Materials and Methods: For this study, 20 rabbits were used. The animals were divided into a guided surgery group (GG) and a control group (CG) and were then divided into 4 subgroups - subgroups 1, 2, 3, and 4 - corresponding to drills used 10, 20, 30, and 40 times, respectively. All animals received 5 osteotomies in each tibia, by use of the classic drilling procedure in one tibia and guided surgery in the other tibia. The osteotomized areas were removed and processed immunohistochemically for detection of osteocalcin, receptor activator of nuclear factor κB ligand (RANKL), osteoprotegerin (OPG), and caspase 3. Results: Immunohistochemical analysis showed that osteocalcin expression was initially higher in the CG and remained constant after drill reutilization. Although the expressions of RANKL and OPG were not statistically different for the GG and CG, the RANKL/OPG ratio tended to be higher for the GG. Moreover, caspase 3 expression was elevated in the GG, proportionally to the number of osteotomies, indicating an increase in the apoptosis index in the GG. Conclusions: The classic drilling procedure is more favorable to cell viability than guided surgery.© 2013 American Association of Oral and Maxillofacial Surgeons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Excessive mechanical stress due to caudal sloping of the tibial plateau may result In early breakdown of the cranial cruciate ligament (CrCL). Five dogs with CrCL rupture associated with caudal sloping of the proximal tibial plateau are described. All were small dogs, of between three and six years of age, with a mean bodyweight of 9.3 kg, which had acute hindlimb lameness. Radiographic examination revealed cranial displacement of the tibia, with a tibial angle varying from 58 to 60 degrees. All cases were treated with a lateral fabellotibial suture and cranial cuneiform osteotomy of the proximal tibia. All dogs were using the operated limb three days after surgery, with normal gait re-established after a mean period of 10 days. Excessive tibial plateau sloping is not a frequent cause of hindlimb lameness In small animals, although it Is Important to consider it as a predisposing factor for rupture of the CrCL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: the aim of this study was to evaluate bone regeneration in bone cavities filled with particulate autogenous bone either harvest in blocks and subjected to milling procedures or collected during osteotomy with implant burs. Materials and Methods: In 12 rabbits, 3 noncritical unicortical cavities 7 mm in diameter were prepared with a trephine drill on the right tibia. The cavities were filled respectively with particulate autogenous bone achieved with a manual bone crusher ( particulate group), with particulate autogenous bone obtained using bone collector during osteotomy ( collected group), and with blood clot ( control group). Animals were sacrificed at 7, 15, and 30 days after surgery ( 4 animals for each time period). The sections were examined by histologic and histomorphometric analysis. Results: At 7 days, the samples were filled by coagulum, and bone particles were observed only in the collected (24%) and particulate groups (44.75%). At 15 days, there was connective differentiation in all groups, with presence of grafted bone particles and onset of newly formed bone in the collected (38.88%) and particulate groups (46.0%). At 30 days, there was bone fill ( immature trabecular bone) of the cavities in the control (50%), collected (64.63%) and particulate groups (66%). Conclusion: No significant difference was demonstrated between noncritical unicortical bone defects in rabbit tibiae filled with particulate bone harvested as a block and subjected to milling and those filled with bone collected during osteotomy with implant drills when the defects were observed up to 30 days following their creation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: This study evaluated and compared bone heating, drill deformation, and drill roughness after several implant osteotomies in the guided surgery technique and the classic drilling procedure. Materials and Methods: The tibias of 20 rabbits were used. The animals were divided into a guided surgery group (GG) and a control group (CG); subgroups were then designated (G0, G1, G2, G3, and G4, corresponding to drills used 0, 10, 20, 30 and 40 times, respectively). Each animal received 10 sequential osteotomies (5 in each tibia) with each technique. Thermal changes were quantified, drill roughness was measured, and the drills were subjected to scanning electron microscopy. Results: Bone temperature generated by drilling was significantly higher in the GG than in the CG. Drill deformation in the GG and CG increased with drill use, and in the CG a significant difference between GO and groups G3 and G4 was observed. In the GG, a significant difference between GO and all other groups was found. For GG versus CG, a significant difference was found in the 40th osteotomy. Drill roughness in both groups was progressive in accordance with increased use, but there was no statistically significant difference between subgroups or between GG and CG overall. Conclusion: During preparation of implant osteotomies, the guided surgery technique generated a higher bone temperature and deformed drills more than the classic drilling procedure. The increase in tissue temperature was directly proportional to the number of times drills were used, but neither technique generated critical necrosis-inducing temperatures. Drill deformation was directly proportional to the number of times the drills were used. The roughness of the drills was directly proportional to the number of reuses in both groups but tended to be higher in the GG group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Locking compression plates are used in various configurations with lack of detailed information on consequent bone healing. Study design In this in vivo study in sheep 5 different applications of locking compression plate (LCP) were tested using a 45° oblique osteotomy simulating simple fracture pattern. 60 Swiss Alpine sheep where assigned to 5 different groups with 12 sheep each (Group 1: interfragmentary lag screw and an LCP fixed with standard cortex screws as neutralisation plate; Group 2: interfragmentary lag screw and LCP with locking head screws; Group 3: compression plate technique (hybrid construct); Group 4: internal fixator without fracture gap; Group 5: internal fixator with 3 mm gap at the osteotomy site). One half of each group (6 sheep) was monitored for 6 weeks, and the other half (6 sheep) where followed for 12 weeks. Methods X-rays at 3, 6, 9 and 12 weeks were performed to monitor the healing process. After sacrifice operated tibiae were tested biomechanically for nondestructive torsion and compared to the tibia of the healthy opposite side. After testing specimens were processed for microradiography, histology, histomorphometry and assessment of calcium deposition by fluorescence microscopy. Results In all groups bone healing occurred without complications. Stiffness in biomechanical testing showed a tendency for higher values in G2 but results were not statistically significant. Values for G5 were significantly lower after 6 weeks, but after 12 weeks values had improved to comparable results. For all groups, except G3, stiffness values improved between 6 and 12 weeks. Histomorphometrical data demonstrate endosteal callus to be more marked in G2 at 6 weeks. Discussion and conclusion All five configurations resulted in undisturbed bone healing and are considered safe for clinical application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An iterative method for the fit optimisation of a pre-contoured fracture fixation plate for a given bone data set is presented. Both plate shape optimisation and plate fit quantification are conducted in a virtual environment utilising computer graphical methods and 3D bone and plate models. Two optimised shapes of the undersurface of an existing distal medial tibia plate were generated based on a dataset of 45 3D bone models reconstructed from computed tomography image data of Japanese tibiae. The existing plate shape achieved an anatomical fit on 13% of tibiae from the dataset. Modified plate 1 achieved an anatomical fit for 42% and modified plate 2 a fit for 67% of the bones. If either modified plate 1 or plate 2 is used, then the anatomical fit can be increased to 82% for the same dataset. Issues pertaining to any further improvement in plate fit/shape are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Ovine models are widely used in orthopaedic research. To better understand the impact of orthopaedic procedures computer simulations are necessary. 3D finite element (FE) models of bones allow implant designs to be investigated mechanically, thereby reducing mechanical testing. Hypothesis We present the development and validation of an ovine tibia FE model for use in the analysis of tibia fracture fixation plates. Material & Methods Mechanical testing of the tibia consisted of an offset 3-pt bend test with three repetitions of loading to 350N and return to 50N. Tri-axial stacked strain gauges were applied to the anterior and posterior surfaces of the bone and two rigid bodies – consisting of eight infrared active markers, were attached to the ends of the tibia. Positional measurements were taken with a FARO arm 3D digitiser. The FE model was constructed with both geometry and material properties derived from CT images of the bone. The elasticity-density relationship used for material property determination was validated separately using mechanical testing. This model was then transformed to the same coordinate system as the in vitro mechanical test and loads applied. Results Comparison between the mechanical testing and the FE model showed good correlation in surface strains (difference: anterior 2.3%, posterior 3.2%). Discussion & Conclusion This method of model creation provides a simple method for generating subject specific FE models from CT scans. The use of the CT data set for both the geometry and the material properties ensures a more accurate representation of the specific bone. This is reflected in the similarity of the surface strain results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this sheep study, we investigated the influence of fixation stability on the temporal and spatial distribution of tissues in the fracture callus. As the initial mechanical conditions have been cited as being especially important for the healing outcome, it was hypothesized that differences in the path of healing would be seen as early as the initial phase of healing. ----- ----- Sixty-four sheep underwent a mid-shaft tibial osteotomy that was treated with either a rigid or a semi-rigid external fixator. Animals were sacrificed at 2, 3, 6 and 9 weeks postoperatively and the fracture calluses were analyzed using radiological, biomechanical and histological techniques. Statistical comparison between the groups was performed using the Mann–Whitney U test for unpaired non-parametric data. ----- ----- In the callus of the tibia treated with semi-rigid fixation, remnants of the fracture haematoma remained present for longer, although new periosteal bone formation during early healing was similar in both groups. The mechanical competence of the healing callus at 6 weeks was inferior compared to tibiae treated with rigid fixation. Semi-rigid fixation resulted in a larger cartilage component of the callus, which persisted longer. Remodeling processes were initiated earlier in the rigid group, while new bone formation continued throughout the entire investigated period in the semi-rigid group. ----- ----- In this study, evidence is provided that less rigid fixation increased the time required for healing. The process of intramembranous ossification appeared during the initial stages of healing to be independent of mechanical stability. However, the delay in healing was related to a prolonged chondral phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adequate blood supply and sufficient mechanical stability are necessary for timely fracture healing. Damage to vessels impairs blood supply; hindering the transport of oxygen which is an essential metabolite for cells involved in repair. The degree of mechanical stability determines the mechanical conditions in the healing tissues. The mechanical conditions can influence tissue differentiation and may also inhibit revascularization. Knowledge of the actual conditions in a healing fracture in vivo is extremely limited. This study aimed to quantify the pressure, oxygen tension and temperature in the external callus during the early phase of bone healing. Six Merino-mix sheep underwent a tibial osteotomy. The tibia was stabilized with a standard mono-lateral external fixator. A multi-parameter catheter was placed adjacent to the osteotomy gap on the medial aspect of the tibia. Measurements of oxygen tension and temperature were performed for ten days post-op. Measurements of pressure were performed during gait on days three and seven. The ground reaction force and the interfragmentary movements were measured simultaneously. The maximum pressure during gait increased (p=0.028) from three (41.3 [29.2-44.1] mm Hg) to seven days (71.8 [61.8-84.8] mm Hg). During the same interval, there was no change (p=0.92) in the peak ground reaction force or in the interfragmentary movement (compression: p=0.59 and axial rotation: p=0.11). Oxygen tension in the haematoma (74.1 mm Hg [68.6-78.5]) was initially high post-op and decreased steadily over the first five days. The temperature increased over the first four days before reaching a plateau at approximately 38.5 degrees C on day four. This study is the first to report pressure, oxygen tension and temperature in the early callus tissues. The magnitude of pressure increased even though weight bearing and IFM remained unchanged. Oxygen tensions were initially high in the haematoma and fell gradually with a low oxygen environment first established after four to five days. This study illustrates that in bone healing the local environment for cells may not be considered constant with regard to oxygen tension, pressure and temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of new blood vessels is a prerequisite for bone healing. CYR61 (CCN1), an extracellular matrix-associated signaling protein, is a potent stimulator of angiogenesis and mesenchymal stem cell expansion and differentiation. A recent study showed that CYR61 is expressed during fracture healing and suggested that CYR61 plays a significant role in cartilage and bone formation. The hypothesis of the present study was that decreased fixation stability, which leads to a delay in healing, would lead to reduced CYR61 protein expression in fracture callus. The aim of the study was to quantitatively analyze CYR61 protein expression, vascularization, and tissue differentiation in the osteotomy gap and relate to the mechanical fixation stability during the course of healing. A mid-shaft osteotomy of the tibia was performed in two groups of sheep and stabilized with either a rigid or semirigid external fixator, each allowing different amounts of interfragmentary movement. The sheep were sacrificed at 2, 3, 6, and 9 weeks postoperatively. The tibiae were tested biomechanically and histological sections from the callus were analyzed immunohistochemically with regard to CYR61 protein expression and vascularization. Expression of CYR61 protein was upregulated at the early phase of fracture healing (2 weeks), decreasing over the healing time. Decreased fixation stability was associated with a reduced upregulation of the CYR61 protein expression and a reduced vascularization at 2 weeks leading to a slower healing. The maximum cartilage callus fraction in both groups was reached at 3 weeks. However, the semirigid fixator group showed a significantly lower CYR61 immunoreactivity in cartilage than the rigid fixator group at this time point. The fraction of cartilage in the semirigid fixator group was not replaced by bone as quickly as in the rigid fixator group leading to an inferior histological and mechanical callus quality at 6 weeks and therefore to a slower healing. The results supply further evidence that CYR61 may serve as an important regulator of bone healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fracture healing is influenced by fixation stability and experimental evidence suggests that the initial mechanical conditions may determine the healing outcome. We hypothesised that mechanical conditions influence not only the healing outcome, but also the early phase of fracture healing. Additionally, it was hypothesised that decreased fixation stability characterised by an increased shear interfragmentary movement results in a delay in healing. Sixty-four sheep underwent a mid-shaft tibial osteotomy which was treated with either a rigid or a semi-rigid external fixator. Animals were sacrificed at 2, 3, 6 and 9 weeks postoperatively and the fracture callus was analysed using radiological, biomechanical and histological techniques. The tibia treated with semi-rigid fixation showed inferior callus stiffness and quality after 6 weeks. At 9 weeks, the calluses were no longer distinguishable in their mechanical competence. The calluses at 9 weeks produced under rigid fixation were smaller and consisted of a reduced fibrous tissue component. These results demonstrate that the callus formation over the course of healing differed both morphologically and in the rate of development. In this study, we provide evidence that the course of healing is influenced by the initial fixation stability. The semi-rigid fixator did not result in delayed healing, but a less optimal healing path was taken. An upper limit of stability required for successful healing remains unknown, however a limit by which healing is less optimal has been determined.