128 resultados para thermostability


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, transgenic plants expressing immunogenic proteins of foot-and-mouth disease virus (FMDV) have been used as oral or parenteral vaccines against foot-and-mouth disease (FMD). They exhibit advantages like cost effectiveness, absence of processing, thermostability, and easy oral application. FMDV VP1 protein of single serotype has been mostly used as immunogen. Here we report the development of a bivalent vaccine with tandem-linked VP1 proteins of two serotypes, A and O, present in transgenic forage crop Crotalaria juncea. The expression of the bivalent protein in the transgenic plants was confirmed by Western blot analysis. Guinea pig reacted to orally or parenterally applied vaccine by humoral as well as cell-mediated immune responses including serum antibodies and stimulated lymphocytes, respectively. The vaccine protected the animals against a challenge with the virus of serotype A as well as O. This is the first report on the development of a bivalent FMD vaccine using a forage crop.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enzyme SAICAR synthetase ligates aspartate with CAIR (5'-phosphoribosyl-4-carboxy-5-aminoimidazole) forming SAICAR (5-amino-4-imidazole-N-succinocarboxamide ribonucleotide) in the presence of ATP. In continuation with our previous study on the thermostability of this enzyme in hyper-/thermophiles based on the structural aspects, here, we present the dynamic aspects that differentiate the mesophilic (E. coli, E. chaffeensis), thermophilic (G. kaustophilus), and hyperthermophilic (M. jannaschii, P. horikoshii) SAICAR synthetases by carrying out a total of 11 simulations. The five functional dimers from the above organisms were simulated using molecular dynamics for a period of 50 ns each at 300 K, 363 K, and an additional simulation at 333 K for the thermophilic protein. The basic features like root-mean-square deviations, root-mean-square fluctuations, surface accessibility, and radius of gyration revealed the instability of mesophiles at 363 K. Mean square displacements establish the reduced flexibility of hyper-/thermophiles at all temperatures. At the simulations time scale considered here, the long-distance networks are considerably affected in mesophilic structures at 363 K. In mesophiles, a comparatively higher number of short-lived (having less percent existence time) C alpha, hydrogen bonds, hydrophobic interactions are formed, and long-lived (with higher percentage existence time) contacts are lost. The number of time-averaged salt-bridges is at least 2-fold higher in hyperthermophiles at 363 K. The change in surface accessibility of salt-bridges at 363 K from 300 K is nearly doubled in mesophilic protein compared to proteins from other temperature classes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal stability of nanocrystalline clusters, the phase evolution, and their effects on magnetic Propertieswere studied for as-cast Nd60Al10Fe20Co10 alloy using differential scanning calorimetry curves, x-ray diffraction patterns, scanning electron microscopy, and high-resolution transition electron microscopy. Thermomagnetic curves and hysteresis loops of the bulk metallic glass were measured during the annealing process. The high thermostability of the hardmagnetic properties of the samples observed is attributed to the stability of the nanocrystalline clusters upon annealing, while the slight enhancement in the magnetization is due to the precipitation of some Nd-rich metastable phases. The mechanism of thermostability of the nanocrystalline clusters and the formation of the metastable phases are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Meeting the world's growing energy demands while protecting our fragile environment is a challenging issue. Second generation biofuels are liquid fuels like long-chain alcohols produced from lignocellulosic biomass. To reduce the cost of biofuel production, we engineered fungal family 6 cellobiohydrolases (Cel6A) for enhanced thermostability using random mutagenesis and recombination of beneficial mutations. During long-time hydrolysis, engineered thermostable cellulases hydrolyze more sugars than wild-type Cel6A as single enzymes and binary mixtures at their respective optimum temperatures. Engineered thermostable cellulases exhibit synergy in binary mixtures similar to wild-type cellulases, demonstrating the utility of engineering individual cellulases to produce novel thermostable mixtures. Crystal structures of the engineered thermostable cellulases indicate that the stabilization comes from improved hydrophobic interactions and restricted loop conformations by proline substitutions. At high temperature, free cysteines contribute to irreversible thermal inactivation in engineered thermostable Cel6A and wild-type Cel6A. The mechanism of thermal inactivation in this cellulase family is consistent with disulfide bond degradation and thiol-disulfide exchange. Enhancing the thermostability of Cel6A also increases tolerance to pretreatment chemicals, demonstrated by the strong correlation between thermostability and tolerance to 1-ethyl-3-methylimidazolium acetate. Several semi-rational protein engineering approaches – on the basis of consensus sequence analysis, proline stabilization, FoldX energy calculation, and high B-factors – were evaluated to further enhance the thermostability of Cel6A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presented doctoral research utilizes time-resolved spectroscopy to characterize protein dynamics and folding mechanisms. We resolve millisecond-timescale folding by coupling time-resolved fluorescence energy transfer (trFRET) to a continuous flow microfluidic mixer to obtain intramolecular distance distributions throughout the folding process. We have elucidated the folding mechanisms of two cytochromes---one that exhibits two-state folding (cytochrome cb562) and one that has both a kinetic refolding intermediate ensemble and a distinct equilibrium unfolding intermediate (cytochrome c552). Our data reveal that the distinct structural features of cytochrome c552 contribute to its thermostability.

We have also investigated intrachain contact dynamics in unfolded cytochrome cb562 by monitoring electron transfer, which occurs as the heme collides with a ruthenium photosensitizer, covalently bound to residues along the polypeptide. Intrachain diffusion for chemically denatured proteins proceeds on the microsecond timescale with an upper limit of 0.1 microseconds. The power-law dependence (slope = -1.5) of the rate constants on the number of peptide bonds between the heme and Ru complex indicate that cytochrome cb562 is minimally frustrated.

In addition, we have explored the pathway dependence of electron tunneling rates between metal sites in proteins. Our research group has converted cytochrome b562 to a c-type cytochrome with the porphyrin covalently bound to cysteine sidechains. We have investigated the effects of the changes to the protein structure (i.e., increased rigidity and potential new equatorial tunneling pathways) on the electron transfer rates, measured by transient absorption, in a series of ruthenium photosensitizer-modified proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Terpenes represent about half of known natural products, with terpene synthases catalyzing reactions to increase the complexity of substrates and generate cyclizations of the linear diphosphate substrates, therefore forming rings and stereocenters. With their diverse functionality, terpene synthases may be highly evolvable, with the ability to accept a wide range of non-natural compounds and with high product selectivity. Our hypothesis is that directed evolution of terpene synthases can be used to increase selectivity of the synthase on a specific substrate. In the first part of the work presented herein, three natural terpene synthases, Cop2, BcBOT2, and SSCG_02150, were tested for activity against the natural substrate and a non-natural substrate, called Surrogate 1, and the relative activities on both the natural and non-natural substrates were compared. In the second part of this work, a terpene synthase variant of BcBOT2 that has been evolved for thermostability, was used for directed evolution for increased activity and selectivity on the non-natural substrate referred to as Surrogate 2. Mutations for this evolution were introduced using random mutagenesis, with error prone polymerase chain reactions, and using site-specific saturation mutagenesis, in which an NNK library is designed with a specific active site amino acid targeted for mutation. The mutant enzymes were then screened and selected for enhancement of the desired functionality. Two neutral mutants, 19B7 W367F and 19B7 W118Q, were found to maintain activity on Surrogate 2, as measured by the screen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part I: Synthesis of L-Amino Acid Oxidase by a Serine- or Glycine-Requiring Strain of Neurospora

Wild-type cultures of Neurospora crassa growing on minimal medium contain low levels of L-amino acid oxidase, tyrosinase, and nicotinarnide adenine dinucleotide glycohydrase (NADase). The enzymes are derepressed by starvation and by a number of other conditions which are inhibitory to growth. L-amino acid oxidase is, in addition, induced by growth on amino acids. A mutant which produces large quantities of both L-amino acid oxidase and NADase when growing on minimal medium was investigated. Constitutive synthesis of L-amino acid oxidase was shown to be inherited as a single gene, called P110, which is separable from constitutive synthesis of NADase. P110 maps near the centromere on linkage group IV.

L-amino acid oxidase produced constitutively by P110 was partially purified and compared to partially purified L-amino acid oxidase produced by derepressed wild-type cultures. The enzymes are identical with respect to thermostability and molecular weight as judged by gel filtration.

The mutant P110 was shown to be an incompletely blocked auxotroph which requires serine or glycine. None of the enzymes involved in the synthesis of serine from 3-phosphoglyceric acid or glyceric acid was found to be deficient in the mutant, however. An investigation of the free intracellular amino acid pools of P110 indicated that the mutant is deficient in serine, glycine, and alanine, and accumulates threonine and homoserine.

The relationship between the amino acid requirement of P110 and its synthesis of L-amino acid oxidase is discussed.

Part II: Studies Concerning Multiple Electrophoretic Forms of Tyrosinase in Neurospora

Supernumerary bands shown by some crude tyrosinase preparations in paper electrophoresis were investigated. Genetic analysis indicated that the location of the extra bands is determined by the particular T allele present. The presence of supernumerary bands varies with the method used to derepress tyrosinase production, and with the duration of derepression. The extra bands are unstable and may convert to the major electrophoretic band, suggesting that they result from modification of a single protein. Attempts to isolate the supernumerary bands by continuous flow paper electrophoresis or density gradient zonal electrophoresis were unsuccessful.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A liofilização - ou secagem a frio (freeze drying em inglês) - é um complexo processo multiestágios, onde o produto é primeiramente congelado e sua secagem feita através de sublimação. Devido a esta forma de secagem a liofilização se torna um processo atrativo particularmente importante para a estabilização de componentes orgânicos hidratados e lábeis, de origem biológica. O processo de liofilização é amplamente empregado na indústria farmacêutica, porém em termos de gestão de processo, deve-se evitar a liofilização a todo custo, pois o processo possui diversas desvantagens como: equipamentos de alto investimento, alta demanda energética, processo que demanda tempos longos e produtos com facilidade de hidratar e frágeis, necessitando ser cuidadosamente embalados e armazenados. Este trabalho tem como objetivo a diminuição do ciclo de liofilização de uma vacina viral e analisar a possibilidade de carregamento desse produto no liofilizador a temperaturas negativas, de forma a possibilitar o aumento de produtividade. Para tal, foram realizados três experimentos com ciclos de liofilização com 17 e 20h a menos que o ciclo de liofilização da vacina comercial. Os experimentos foram realizados com a mesma formulação do lote comercial e utilizando um liofilizador piloto. As modificações foram realizadas nas propriedades físicas do ciclo de liofilização atual (temperatura, pressão e tempo) e na temperatura de carga do produto, sem alteração na formulação da vacina ou embalagem primária. Amostras do produto liofilizado experimental foram analisadas quanto ao seu aspecto, desempenho, umidade residual, potência e termoestabilidade acelerada segundo os Mínimos Requerimentos da Organização Mundial da Saúde. Todos os resultados analisados estiveram dentro das especificações e próximos ou melhores quando comparados aos lotes comerciais de origem

Relevância:

10.00% 10.00%

Publicador:

Resumo:

叶片在成长进程中光饱和光合速率持续提高,尽管幼叶光呼吸的测定值较低,但幼叶光呼吸与总光合之比较高。叶片在成长初期就具有较高的最大光化学效率,但是仍略低于发育成熟的叶片。随着叶片的成长,光下叶片光系统II实际效率增加,而非光化学猝灭下降。幼叶叶黄素总量与叶绿素之比较高,随着叶而积的增加该比值下降;光下,幼叶脱环氧化程度较高。同时,我们也观察到叶片生长初期活性氧清除酶系的活性较高。叶片生长过程中提高的光破坏防御机制与叶片相对含水量呈现很好的负相关,而不是叶片水势。因此,推测叶片生长过程中光破坏防御机制的建立可能与叶片膨压有关。 自然状态下,不同展开程度的叶片均未发生明显的光抑制;但将所柏‘叶片平展并暴露在强光下时幼叶发生明显的光抑制,伴随叶丽积的增加光抑制程度减轻。自然条件下测量叶片角度,观察到在叶片展开过程中叶柄夹角逐渐增加:日动态过程中幼叶的悬挂角随光强增加而明显减小,而完全展丌叶的悬挂角变化幅度很小。叶片角度的变化使实际照射到幼叶叶表的光强减少。推测较强的光ll乎吸、依赖叶黄素循环的热耗散、活性氧清除酶系以及较大的叶角变化可能是自然状态下幼叶未发生严重光抑制和光破坏的原因。 与成熟叶片相比,高温严重地伤害新生叶片光系统IT的结构,并导致最大光化学效率和光系统II活性下降。高温对光系统II的伤害包括供体测和受体测;而进一步的研究和分析表明高温很可能影响放氧复合物活性,从而改变光系统II的结构并最终导致受体测电子传递受阻。叶片生长和光合机构的健全使得光系统II热稳定性逐步增强,因此推测叶片生长过程中光系统II热稳定性的增强可能主要与其放氧复合物结构和功能的完善有关。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, bioconversion of trans-cinnamic acid(t-Ca)to L-phenylalanine (L-phe) has been investigated by using immobilized yeast cells with induced L-phe Ammonia-lyase(PAL, EC.4.3.1.5) as biocatalysts. The contents are the following. (1) Thirty strains of yeasts, including two genera (Rhodotorula, Sporobolomyces), six species (R. glutinis R. minuta,R.rubra,R.sineses,R.roseus and S.salmonicolor)were screened for their ability to converse the substrates, t-Ca and ammonia, to the product, L-phe, by using yeast cells as biocatalyst, and primary evaluation for PAL activity of the selected strains was investigated. From the results of the screening experiments, it was found that 22 strains were able to produce L-phe from t-Ca with the range of conversion yield from 2% to 67%. Studies on PAL formation time course during cultivation show that the maximum PAL activity of several different strains ranges from 2.3 to 14.4×10-3U/mg cell dry weight. The biomass of tested strains at their maximum enzyme activity is also greatly varied. (2)One of the selected strains, R. rubra as 2.166, was used for immobilized cells as biocatalysts to produce L-phe. The optimum conversion conditions and effective stablization agents were investigated. The results shown that polyacrylamide gel was chosen as a suitable matrix for immobilization of the yeast cells, and it can retain 88% of the PAL activity in the reverse direction at the following reactive conditions: [t-Ca]: 34mM. [NH4OH]: 6.OM.PH10.00, temperature: 30℃. (3) The effects of various kinds of effectors on the production of L-phe were also examined. Membrane permeabilizing agents can stimulate L-phe synthesis, but make the stability of PAL decline greatly. Polyalchoholic agents and glutamic acid were very effective for the stabilization of PAL. At the presence of glutamic acid (5%), the half life of L-phe productivity with the immobilized cells was extended to 192 hours, which was much higher than most of that having been reproted, while the half life of resting cells was only about 15 hours. (4) Use of initial velocity studies on the kinetics of enzyme-catalized reaction indicated that the apparent Km value was 13.0mM for the immobilized cells, and 4.8mM for the resting cells. Thermostability of the immobilized cells was better than the resting cells. Fluid bed bioreactor is more effective than batch bioreator in prolonging the thermostability of the biocatalysts. (5) CGA- 688 resin column chromatographic procedure was employed in the isolation and purification of L-phe, t-Ca and other substances from the reactire mixture. (6) Preparative-scale production of L-phe on a level of gram amount by immobilized cells from the culture broth of R. rubra AS2.166 allowed for the conversion yield with 30%. The characteristic physico-chemical criteria (including melting point, optical activity, elements analysis, IR, NMR) are the same with the standard L-phe. 本文报告了利用诱导的苯丙氨酸解氨酶 (PAL.EC.4.3.1.5)催化反式肉桂酸(t-Ca)氨加 成制备L-苯丙氨酸(L-phe)的研究,主要内容为:(1) 我们搜集了三十株酵母菌株,利用全细胞转化t-Ca生成L-phe的能力进行了直 接筛选,并对其PAL活性水平进行了初步评估研究。研究结果表明,其中22株酵母具有转化t-Ca生产L-phe的能力,它们包括 Rhodotorula glutinis,R.rubra, R.sineses 和Sporobolomyces roseus 的菌株,转化率在2-67%。细胞生长和PAL形成过程的研究 表明,不同菌株PAL最大活力在2.3-14.4×10-3U/mg 细胞干重,达到最大PAL活性时各株酵母的生长情况也极不一致。(2) 利用筛 选出的一株深红酵母R.rubra AS2.166 作为供试菌株,研究了细胞固定化条件下生物转化的最适条件及PAL在固定化条件下的稳定 性。结果表明以聚丙烯酰胺凝胶包埋法较为理想,能使细胞合成L-phe活力保持88%,最适t-Ca浓度为34mM,最适NH4OH浓度为6M,最 适PH10.0,最适温度45℃。(3) 多种效应物对L-phe 合成的影响研究表明:表面活性剂能刺激L-phe的合成,但使PAL稳定性下降。 多羟基化合物及Glu对PAL的稳定十分有效在有Glu存在下,能使固定化细胞合成L-phe的半寿期达192小时左右,高于大部分现已报 导的固定化结果。(4) 用初速度法研究了深红酵母AS2.166中PAL的酶促反应特征,测得固定化细胞对t-Ca的表观米氏常数Km为 13.0mM,全细胞为4.8mM,细胞固定后热稳定性提高。(5) 建立了适合低浓度分离纯化产物与底物的聚苯乙烯大孔树脂柱层析技术 ,能使L-phe与t-Ca及产物混合物中其它成分有效分开。(6) 利用固定化的R.rubra AS2.166细胞所做的制备实验能够使L-phe的产 率达到30%左右,其主要的理化指标(包括熔点、比旋光度、元素分析、IR、NMR等)与标准L-phe一致。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a simple method for novel flower-like In4SnS8 nanostructure synthesis. A flower-like In4SnS8 nanostructure was synthesized via a one-pot hydrothermal route using the biomolecule L-cysteine as a sulfur source. The structure was characterized using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption analysis and photoluminescence spectra. This flower-like structure consists of crosslinked nanoflakes and possesses good thermostability and a high BET surface area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A peroxidase was extracted from Chinese soybean seed coat, and its thermostability and acid-stability were characterized. This peroxidase was immobilized into a self-gelatinizable grafting copolymer of polyvinyl alcohol with 4-vinylpyridine(PVA-g-PVP) to construct an acid-stable hydrogen peroxide biosensor. The effect of pH was studied for optimum analytical performances by amperometric and spectro-photometric methods, also the K-m(app) and the stability of the soybean peroxidase-based biosensor are discussed. At pH 3.0, the soybean peroxidase maintained its bioactivity and the enzyme electrode had a linear range from 0.01 to 6.2 mM with a detection limit of 1.0 x 10(-7) M. In addition, the main characteristics of different hydrogen peroxide sensors were compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An acid-stable soybean-peroxidase biosensor was devel oped by immobilizing the enzyme in a sol-gel thin film. Methylene blue was used as a mediator because of its high electron-transfer efficiency. The sol-gel thin film and enzyme membrane were characterized by FT-IR, and the effects of pH, operating potential, and temperature were explored for optimum analytical performance by using the amperometric method. The H2O2 sensor exhibited a fast response (5 s), high sensitivity (27.5 mu A/mM), as well as good thermostability and long-term stability. In addition, the performance of the biosensor was investigated using flow-injection analysis (FIA).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extremely thermophilic anaerobic archaeon strain, HJ21, was isolated from a deep-sea hydrothermal vent, could produce hyperthermophilic alpha-amylase, and later was identified as Thermococcus from morphological, biochemical, and physiological characteristics and the 16S ribosomal RNA gene sequence. The extracellular thermostable alpha-amylase produced by strain HJ21 exhibited maximal activity at pH 5.0. The enzyme was stable in a broad pH range from pH 5.0 to 9.0. The optimal temperature of alpha-amylase was observed at 95 degrees C. The half-life of the enzyme was 5 h at 90 degrees C. Over 40% and 30% of the enzyme activity remained after incubation at 100 degrees C for 2 and 3 h, respectively. The enzyme did not require Ca2+ for thermostability. This alpha-amylase gene was cloned, and its nucleotide sequence displayed an open reading frame of 1,374 bp, which encodes a protein of 457 amino acids. Analysis of the deduced amino acid sequence revealed that four homologous regions common in amylases were conserved in the HJ21 alpha-amylase. The molecular weight of the mature enzyme was calculated to be 51.4 kDa, which correlated well with the size of the purified enzyme as shown by the sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A psychrotrophic bacterial strain, Pseudoaltermonas sp. SM9913, was isolated from deep-sea sediment collected at 1,855 m depth. Two proteases produced by Pseudoaltermonas sp. SM9913 were purified, MPC-01 and MCP-02. MCP-01 is a serine protease with a molecular weight of 60.7 kDa. It is cold-adapted with an optimum temperature of 30-35degreesC. Its K-m and E-a for the hydrolysis of casein were 0.18% and 39.1 kJ mol(-1), respectively. It had low thermostability, and its activity was reduced by 73% after incubation at 40degreesC for 10 min. MCP-02 is a mesophilic metalloprotease with a molecular weight of 36 kDa. Its optimum temperature for the hydrolysis of casein was 50-55degreesC. The K-m and E-a of MCP-02 for the hydrolysis of casein were 0.36% and 59.3 kJ mol(-1), respectively. MCP-02 had high thermostability, and its activity was reduced by only 30.5% after incubation at 60degreesC for 10 min. At low temperatures, Pseudoaltermonas sp. SM9913 mainly produced the psychrophilic protease MCP-01.