66 resultados para thalidomide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thalidomide is an anti-angiogenic agent currently used to treat patients with malignant cachexia or multiple myeloma. Lenalidomide (CC-5013) is an immunomodulatory thalidomide analogue licensed in the United States of America (USA) for the treatment of a subtype of myelodysplastic syndrome. This two-centre, open-label phase I study evaluated dose-limiting toxicities in 55 patients with malignant solid tumours refractory to standard chemotherapies. Lenalidomide capsules were consumed once daily for 12 weeks according to one of the following three schedules: (I) 25 mg daily for the first 7 d, the daily dose increased by 25 mg each week up to a maximum daily dose of 150 mg; (II) 25 mg daily for 21 d followed by a 7-d rest period, the 4-week cycle repeated for 3 cycles; (III) 10 mg daily continuously. Twenty-six patients completed the study period. Two patients experienced a grade 3 hypersensitivity rash. Four patients in cohort I and 4 patients in cohort II suffered grade 3 or 4 neutropaenia. In 2 patients with predisposing medical factors, grade 3 cardiac dysrhythmia was recorded. Grade 1 neurotoxicity was detected in 6 patients. One complete and two partial radiological responses were measured by computed tomography scanning; 8 patients had stable disease after 12 weeks of treatment. Fifteen patients remained on treatment as named patients; 1 with metastatic melanoma remains in clinical remission 3.5 years from trial entry. This study indicates the tolerability and potential clinical efficacy of lenalidomide in patients with advanced solid tumours who have previously received multi-modality treatment. Depending on the extent of myelosuppressive pre-treatment, dose schedules (II) or (III) are advocated for large-scale trials of long-term administration. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer cachexia is a multidimensional syndrome characterised by wasting, loss of weight, loss of appetite, metabolic alterations, fatigue and reduced performance status. A significant number of patients with advanced cancer develop cachexia before death. There is no identified optimum treatment for cancer cachexia. While the exact mechanism of the action of thalidomide is unclear, it is known to have immunomodulatory and anti-inflammatory properties, which are thought to help reduce the weight loss associated with cachexia. Preliminary studies of thalidomide have demonstrated encouraging results. This review aimed to (1) evaluate the effectiveness of thalidomide, and (2) identify and assess adverse effects from thalidomide for cancer cachexia. Electronic searches were undertaken in CENTRAL, MEDLINE, EMBASE, Web of Science and CINAHL (from inception to April 2011). Reference lists from reviewed articles, trial registers, relevant conference documents and thalidomide manufacturers identified additional literature. This review included randomised controlled trials (RCTs) and non-RCTs. Participants were adults diagnosed with advanced or incurable cancer and weight loss or a clinical diagnosis of cachexia who were administered thalidomide. All titles and abstracts retrieved by electronic searching were downloaded to a reference management database. Duplicates were removed and the remaining citations were read by two review authors and checked for eligibility. Studies that were deemed ineligible for inclusion had clear reasons for exclusion documented. Data were extracted independently by two review authors for all eligible studies. While a meta-analysis was planned for this review, this was not possible due to the small number of studies included and high heterogeneity among them. Thus a narrative synthesis of the findings is presented. The literature search revealed a dearth of large, well conducted trials in this area. This has hindered the review authors' ability to make an informed decision about thalidomide for the management of cancer cachexia. At present, there is insufficient evidence to refute or support the use of thalidomide for the management of cachexia in advanced cancer patients. The review authors cannot confirm or refute previous literature on the use of thalidomide for patients with advanced cancer who have cachexia and there is inadequate evidence to recommend it for clinical practice. Additional, well conducted, large RCTs are needed to test thalidomide both singularly and in combination with other treatment modalities to ascertain its true benefit, if any, for this population. Furthermore, one study (out of the three reviewed) highlighted that thalidomide was poorly tolerated and its use needs to be explored further in light of the frailty of this population

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dose-limiting diarrhea and myelosuppression compromise the success of irinotecan (7-ethyl-10-[4-[1-piperidino]-1-piperidino] carbonyloxycamptothecin) (CPT-11)-based chemotherapy. A recent pilot study indicates that thalidomide attenuates the toxicity of CPT-11 in cancer patients. This study aimed to investigate whether coadministered thalidomide modulated the toxicities of CPT-11 and the underlying mechanisms using several in vivo and in vitro models. Diarrhea, intestinal lesions, cytokine expression, and intestinal epithelial apoptosis were
monitored. Coadministered thalidomide (100 mg/kg i.p. for 8 days) significantly attenuated body weight loss, myelosuppression, diarrhea, and intestinal histological lesions caused by CPT-11 (60 mg/kg i.v. for 4 days). This was accompanied by inhibition of tumor necrosis factor-, interleukins 1 and 6 and interferon-, and intestinal epithelial apoptosis. Coadministered
thalidomide also significantly increased the systemic exposure of CPT-11 but decreased that of SN-38 (7-ethyl-10-hydroxycampothecin). It significantly reduced the biliary excretion and cecal exposure of CPT-11, SN-38, and SN-38 glucuronide. Thalidomide hydrolytic products inhibited hydrolysis of CPT-11 in rat liver microsomes but not in primary rat hepatocytes. In addition, thalidomide and its major hydrolytic products, such as phthaloyl glutamic acid (PGA), increased the intracellular accumulation of CPT-11 and SN-38 in primary rat hepatocytes. They also significantly decreased the transport of CPT-11 and SN-38 in Caco-2 and parental MDCKII cells. Thalidomide and PGA also significantly inhibited P-glycoprotein (PgP/MDR1), multidrug resistance-associated protein (MRP1)- and MRP2-mediated CPT-11 and SN-38 transport in MDCKII cells. These results provide insights into the pharmacodynamic and  pharmacokinetic mechanisms for the protective effects of thalidomide against CPT-11-induced intestinal toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clinical use of irinotecan (CPT-11) is hindered by dose-limiting diarrhea and myelosuppression. Recent clinical studies indicate that thalidomide, a known tumor necrosis factor-alpha inhibitor, ameliorated the toxicities induced by CPT-11. However, the mechanisms for this are unknown. This study aimed to investigate whether combination of thalidomide modulated the toxicities of CPT-11 using a rat model and the possible role of the altered pharmacokinetic component in the toxicity modulation using in vitro models. The toxicity model was constructed by treatment of healthy rats with CPT-11 at 60 mg/kg per day by intravenous (i.v.) injection. Body weight, acute and delayed-onset diarrhea, blood cell counts, and macroscopic and microscopic intestinal damages were monitored in rats treated with CPT-11 alone or combined therapy with thalidomide at 100 mg/kg administered by intraperitoneal (i.p.) injection. Single dose and 5-day multiple-dose studies were conducted in rats to examine the effects of concomitant thalidomide on the plasma pharmacokinetics of CPT-11 and its major metabolites SN-38 and SN-38 glucuronide (SN-38G). The effect of CPT-11 on thalidomide's pharmacokinetics was also checked. Rat liver microsomes and a rat hepatoma cell line, H4-II-E cells, were used to study the in vitro metabolic interactions between these two drugs. H4-II-E cells were also used to investigate the effect of thalidomide and its hydrolytic products on the transport of CPT-11 and SN-38. In addition, the effect of thalidomide and its hydrolytic products on rat plasma protein binding of CPT-11 and SN-38 was examined. Administration of CPT-11 by i.v. for 4 consecutive days to rats induced significant body weight loss, decrease in neutrophil and lymphocyte counts, severe acute- and delayed-onset diarrhea, and intestinal damages. These toxicities were alleviated when CPT-11 was combined with thalidomide. In both single-dose and 5-day multiple-dose pharmacokinetic study, coadministered thalidomide significantly increased the area under the plasma concentration-time curve (AUC) of CPT-11, but the AUC and elimination half-life (t(1/2)) of SN-38 were significantly decreased. However, CPT-11 did not significantly alter the pharmacokinetics of thalidomide. Thalidomide at 25 and 250 microM and its hydrolytic products at a total concentration of 10 microM had no significant effect on the plasma protein binding of CPT-11 and SN-38, except for that thalidomide at 250 microM caused a significant increase in the unbound fraction (f(u)) of CPT-11 by 6.7% (P < 0.05). The hydrolytic products of thalidomide (total concentration of 10 microM), but not thalidomide, significantly decreased CPT-11 hydrolysis by 16% in rat liver microsomes (P < 0.01). The formation of both SN-38 and SN-38G from CPT-11, SN-38 glucuronidation, or intracellular accumulation of both CPT-11 and SN-38 in H4-II-E cells followed Michaelis-Menten kinetics with the one-binding site model being the best fit for the kinetic data. Coincubation or 2-hr preincubation of thalidomide at 25 microM and 250 microM and its hydrolytic products at 10 microM did not show any significant effects on CPT-11 hydrolysis and SN-38 glucuronidation. However, preincubation of H4-II-E cells with thalidomide (250 microM), its hydrolytic products (total concentration of 10 microM), or phthaloyl glutamic acid (one major thalidomide hydrolytic product, 10 microM) significantly increased the intracellular accumulation of SN-38, but not CPT-11 (P < 0.01). The dose-limiting toxicities of CPT-11 were alleviated by combination with thalidomide in rats and the pharmacokinetic modulation by thalidomide may partially explain its antagonizing effects on the toxicities of CPT-11. The hydrolytic products of thalidomide, instead of the parental drug, modulated the hepatic hydrolysis of CPT-11 and intracellular accumulation of SN-38, probably contributing to the altered plasma pharmacokinetics of CPT-11 and SN-38. Further studies are needed to explore the role of both pharmacokinetics and pharmacodynamic components in the protective effect of thalidomide against the toxicities of CPT-11.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sensitive and simple high performance liquid chromatography (HPLC) method was developed and validated for the determination of thalidomide in rat plasma. Chromatography was accomplished with a reversed-phase Hypersil C18 column. Mobile phase consisted of acetonitrile-10 mM ammonium acetate buffer (pH 5.50) (28:72, v/v), at a flow rate of 0.8 ml/min. Thalidomide was monitored by ultraviolet detector at 220 nm and it gave a linear response as a function of concentration over 0.02–50 μM. The limit of quantitation in rat plasma was 0.50 ng (0.02 μM plasma concentration) with an aliquot of 20 μl. Results from a 3-day validation study indicated that this method allows for simple and rapid quantitation of thalidomide with excellent accuracy and reliability. Using this validated assay, the effect of coadministered irinotecan (CPT-11) on the plasma pharmacokinetics of thalidomide in rats was determined. Coadministration of CPT-11 (intravenously, 60 mg/kg) increased the maximum plasma concentration (Cmax) and area under the plasma concentration–time curve (AUC0–10 h) of thalidomide by 32.29 and 11.66%, respectively, as compared to the control, but none of the effect of CPT-11 was of statistical significance (P > 0.05). Concomitant CPT-11 also caused a 10.04% decrease in plasma clearance (CL) and 14.51% decrease in volume of distribution (Vd) (P > 0.05). These results suggest that coadministered CPT-11 did not significantly alter the plasma pharmacokinetics of thalidomide in rats. Further studies are warranted to explore the pharmacokinetic and pharmacodynamic interactions between CPT-11 and thalidomide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thalidomide is a selective inhibitor of tumor necrosis factor-alpha (TNF-alpha), a cytokine involved in mycobacterial death mechanisms. We investigated the role of this drug in the functional activity of alveolar macrophages in the presence of infection induced by intranasal inoculation of Mycobacterium avium in thalidomide-treated and untreated adult Swiss mice. Sixty animals were inoculated with 5 x 10(6) M. avium by the respiratory route. Thirty animals received daily thalidomide (30 mg/kg mouse) and 30 received water by gavage up to sacrifice. Ten non-inoculated mice were used as a control group. Lots of animals from each group were evaluated until 6 weeks after inoculation. Infection resulted in an increased total number of inflammatory cells as well as increased activity of pulmonary macrophages. Histologically, intranasal inoculation of bacilli resulted in small mononuclear infiltrates located at the periphery of the organ. Culture of lung fragments revealed the presence of bacilli only at the beginning and at the end of the experimental period. Thalidomide administration did not affect the microbiological or histological features of the infection. Thalidomide-treated and untreated animals showed the same amount of M. avium colonies 3 weeks after infection. Although it did not affect bacillary clearance, thalidomide administration resulted in a decreased percent of spread cells and release of hydrogen peroxide, suggesting that factors other than TNF-alpha play a role in the killing of mycobacteria by alveolar macrophages. Thalidomide administration also reduced the number of spread cells among resident macrophages, suggesting a direct effect of the drug on this phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Leprosy can have its course interrupted by type 1 and 2 reactional episodes, the last named of erythema nodosum leprosum (ENL). Thalidomide has been the medication of choice for the control of ENL episodes since 1965. OBJECTIVES: These episodes can repeat and cause damages to the patient. In order to prevent these episodes, an extra dose of 100 mg/day thalidomide was used during six months, followed by a follow-up period of six more months after thalidomide discontinuation. METHODS: We included 42 patients with multibacillary (MB) leprosy who had episodes of ENL. They were male and female patients aged between 18 and 84 years. RESULTS: Of the 42 patients, 39 (92.85%) had the lepromatous form and three (7.15%) had the borderline form. We found that 100% of patients had no reactional episode during the use of the drug. During the follow-up period after thalidomide discontinuation, 33 (78.57%) patients had no reactional episode and nine (21.43%), all of them with the lepromatous form, had mild episodes, which were controlled using non-steroidal anti-inflammatory. There were no thalidomide-related side effects. CONCLUSION: A maintenance dose of 100 mg/day of thalidomide showed to be effective to prevent repeated type 2 reactional episodes of ENL.